目錄ios
超線程是Intel最先提出一項技術,最先出如今2002年的Pentium4上。單個採用超線程的CPU對於操做系統來講就像有兩個邏輯CPU,爲此P4處理器須要多加入一個Logical CPU Pointer(邏輯處理單元)。express
雖然採用超線程技術能同時執行兩個線程,但它並不像兩個真正的CPU那樣,每一個CPU都具備獨立的資源。當兩個線程都同時須要某一個資源時,其中一個要暫時中止,並讓出資源,直到這些資源閒置後才能繼續。所以超線程的性能並不等於兩顆CPU的性能。ubuntu
最開始CPU只有一個核(core),爲了提升性能,引入了雙核CPU,四核CPU等,雙核CPU能同時執行兩個線程。和超線程不一樣的是,雙核CPU是實打實的有兩個central processing units在一個CPU chip。bash
上圖顯示主板上有1個插槽(socket),這個插槽插着一個CPU,這個CPU有4個核(core),每一個核都使用超線程技術,因此這臺機器總共有8個邏輯核。session
一臺擁有8個logic core CPU的機器,執行以下程序:多線程
#include <pthread.h> const int num = 9; pthread_t threads[num]; void *func(void* arg) { while(1) {} return ((void *)0); } int main(int argc, char* argv[]) { for (int i = 0; i < num; i++) { pthread_create(&threads[i], NULL, func, NULL); } for (int i = 0; i < num; i++) { pthread_join(threads[i], NULL); } return 0; }
該程序開啓9個線程每一個線程都執行一個死循環。執行後用top查看cpu使用狀況:app
332 root 20 0 84312 612 416 S 800.0 0.0 7:18.41 cputest
能夠看到cputest的CPU使用狀況爲800%,也就是8個logic core都在執行cputest這個進程。
而在一個只有1個logic的CPU上跑的結果以下:socket
13812 ubuntu 20 0 80284 708 628 S 97.7 0.1 0:10.14 cputest
能夠看到,縱使開啓了9個線程,每一個線程都執行死循環,CPU使用率只有97.7%。ide
1. %CPU -- CPU Usage The task's share of the elapsed CPU time since the last screen update, expressed as a percentage of total CPU time. In a true SMP environment, if a process is multi-threaded and top is not operating in Threads mode, amounts greater than 100% may be reported. You toggle Threads mode with the `H' interactive command. Also for multi-processor environments, if Irix mode is Off, top will operate in Solaris mode where a task's cpu usage will be divided by the total number of CPUs. You toggle Irix/Solaris modes with the `I' interactive command.
以上截取自man top中對於CPU使用率的定義,總結來講某個進程的CPU使用率就是這個進程在一段時間內佔用的CPU時間佔總的CPU時間的百分比。性能
好比某個開啓多線程的進程1s內佔用了CPU0 0.6s, CPU1 0.9s, 那麼它的佔用率是150%。這樣就不難理解上例中cputest進程CPU佔用率爲800%這個結果了。
某進程cpu使用率 = 該進程cpu時間 / 總cpu時間。
/proc/pid/stat中能夠得出進程自啓動以來佔用的cpu時間。以bash進程爲例:
79 (bash) S 46 79 79 34816 0 0 0 0 0 0 46 135 387954 4807 20 0 1 0 6114 232049254400 873 18446744073709551615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
第14項utime和第15項stime分別表示bash自啓動起來,執行用戶代碼態佔用的時間和執行內核態代碼佔用的時間,單位是clock tick,clock tick是時間單位。這兩項的詳細解釋以下(摘自man proc):
(14) utime %lu Amount of time that this process has been scheduled in user mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)). This includes guest time, guest_time (time spent running a virtual CPU, see below), so that applications that are not aware of the guest time field do not lose that time from their calculations. (15) stime %lu Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).
每一個clock tick佔用多少時間呢?
能夠經過sysconf(_SC_CLK_TCK)
獲取1秒內有多少個clock tick(一般是100)。也就是說1 clock tick爲1 / 100秒。
有了上面的基礎,
咱們能夠每隔period秒讀取/proc/pid/stat,解析其中的utime和stime,將其和(utime+stime)減去上一次採樣時這兩項的和(lastutime + laststime),這就是period秒內該進程佔用CPU的時間,單位爲clock tick。
總的CPU時間爲period * sysconf(_SC_CLK_TCK),單位也爲clock tick。
因此公式以下:
某進程cpu使用率 = ((utime+stime) - (lastutime + laststime)) / (period * sysconf(_SC_CLK_TCK))
如下是實現:
#include <unistd.h> #include <stdio.h> #include <sys/time.h> #include <string.h> #include <signal.h> #include <stdlib.h> #include <fstream> #include <iostream> #include <sstream> using namespace std; struct StatData { void parse(const string& content) { size_t rp = content.rfind(')'); std::istringstream iss(content.data() + rp + 1); // 0 1 2 3 4 5 6 7 8 9 11 13 15 // 3770 (cat) R 3718 3770 3718 34818 3770 4202496 214 0 0 0 0 0 0 0 20 // 16 18 19 20 21 22 23 24 25 // 0 1 0 298215 5750784 81 18446744073709551615 4194304 4242836 140736345340592 // 26 // 140736066274232 140575670169216 0 0 0 0 0 0 0 17 0 0 0 0 0 0 iss >> state; iss >> ppid >> pgrp >> session >> tty_nr >> tpgid >> flags; iss >> minflt >> cminflt >> majflt >> cmajflt; iss >> utime >> stime >> cutime >> cstime; iss >> priority >> nice >> num_threads >> itrealvalue >> starttime; } string name; char state; int ppid; int pgrp; int session; int tty_nr; int tpgid; int flags; long minflt; long cminflt; long majflt; long cmajflt; long utime; long stime; long cutime; long cstime; long priority; long nice; long num_threads; long itrealvalue; long starttime; }; int clockTicks = static_cast<int>(::sysconf(_SC_CLK_TCK)); const int period = 2; int pid; int ticks; StatData lastStatData; bool processExists(pid_t pid) { char filename[256]; snprintf(filename, sizeof filename, "/proc/%d/stat", pid); return ::access(filename, R_OK) == 0; } //read /proc/pid/stat string readProcFile(int pid) { char filename[256]; snprintf(filename, sizeof filename, "/proc/%d/stat", pid); ifstream in; in.open(filename); stringstream ss; ss << in.rdbuf(); string ret = ss.str(); return ret; } double cpuUsage(int userTicks, int sysTicks, double kPeriod, double kClockTicksPerSecond) { return (userTicks + sysTicks) / (kClockTicksPerSecond * kPeriod); //CPU使用率計算 } void tick(int num) { string content = readProcFile(pid); StatData statData; memset(&statData, 0, sizeof statData); statData.parse(content); if (ticks > 0) { int userTicks = std::max(0, static_cast<int>(statData.utime - lastStatData.utime)); int sysTicks = std::max(0, static_cast<int>(statData.stime - lastStatData.stime)); printf("pid %d cpu usage:%.1f%%\n", pid, cpuUsage(userTicks, sysTicks, period, clockTicks) * 100); } ticks++; lastStatData = statData; } int main(int argc, char* argv[]) { if (argc < 2) { printf("Usage: %s pid\n", argv[0]); return 0; } pid = atoi(argv[1]); if (!processExists(pid)) { printf("Process %d doesn't exist.\n", pid); return 1; } if (signal(SIGALRM, tick) == SIG_ERR) { exit(0); } struct itimerval tick; memset(&tick, 0, sizeof tick); tick.it_value.tv_sec = period; tick.it_value.tv_usec = 0; tick.it_interval.tv_sec = period; tick.it_interval.tv_usec = 0; setitimer(ITIMER_REAL, &tick, NULL); while (1) { pause(); } return 0; }
代碼很簡單,每隔兩秒採一次樣,計算這兩秒內指定進程的CPU使用率。
爲了測試,先將前文的cputest運行起來,該程序會佔滿8個logic core。
./cputest &
,而後top看下CPU使用率,大約佔用了800%的CPU。
867 root 20 0 84312 616 416 S 800.0 0.0 17:44.60 cputest
接着用咱們的本身的寫的程序看下,pid是867,
./cpumon 867
pid 867 cpu usage:786.0% pid 867 cpu usage:785.5% pid 867 cpu usage:787.5% pid 867 cpu usage:759.5% pid 867 cpu usage:781.5% pid 867 cpu usage:791.5% pid 867 cpu usage:743.5% pid 867 cpu usage:782.0% pid 867 cpu usage:777.5% pid 867 cpu usage:785.0% pid 867 cpu usage:790.5% pid 867 cpu usage:786.0% ^C
能夠看到每隔兩秒都會計算一次,使用率略低於800%,也能夠理解,由於如今cpumon也會佔用必定的CPU時間。
參考資料:
CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained