SQLAlchemy是python 編程語言下的一款ORM框架,該框架創建在數據庫API之上,使用關係對象映射進行數據庫操做,簡單講:將對象轉換成SQL,而後使用數據庫API執行SQL並獲取執行結果。html
Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做python
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html
階段一,使用Engine,ConnectionPooling,Dialect進行數據庫操做,Engine使用ConnectionPooling鏈接數據庫,而後再經過Dialect執行SQL語句。mysql
from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/test", max_overflow=5) #一條數據 engine.execute( "INSERT INTO ts_test (a, b) VALUES ('2', 'v1')" ) # 多條數據 engine.execute( "INSERT INTO ts_test (a, b) VALUES (%s, %s)", ((555, "v1"),(666, "v1"),) ) #使用變量 engine.execute( "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)", id=999, name="v1" ) result = engine.execute('select * from ts_test') result.fetchall()
事務操做:sql
from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/test", max_overflow=5) # 事務操做 with engine.begin() as conn: conn.execute("insert into table (x, y, z) values (1, 2, 3)") conn.execute("my_special_procedure(5)") conn = engine.connect() # 事務操做 with conn.begin(): conn.execute("some statement", {'x':5, 'y':10})
階段二,使用Schema Type,SQL Expression Language,Engine,ConnectionPooling,Dialect進行數據庫操做。數據庫
Engine使用Schema Type建立一個特定的結構對象,以後經過SQL Expression Language將該對象轉換成SQL語句,而後經過ConnectionPooling鏈接數據庫,再而後經過Dialect執行SQL並獲取結果。express
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() #實例化 #建立表 user = Table('user', metadata, #表名 Column('id', Integer, primary_key=True), #字段名,類型 Column('name', String(20)), ) color = Table('color', metadata, Column('id', Integer, primary_key=True), Column('name', String(20)), ) engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/test", max_overflow=5) metadata.create_all(engine) #鏈接數據庫,並執行全部的建表語句 # metadata.clear() #執行一條語句 # metadata.remove() #刪除一條語句
增刪改查編程
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table('user', metadata, Column('id', Integer, primary_key=True), Column('name', String(20)), ) color = Table('color', metadata, Column('id', Integer, primary_key=True), Column('name', String(20)), ) engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) conn = engine.connect() # 建立SQL語句,INSERT INTO "user" (id, name) VALUES (:id, :name) conn.execute(user.insert(),{'id':7,'name':'seven'}) conn.close() # 插入數據 # sql = user.insert().values(id=123, name='wu') # conn.execute(sql) # conn.close() # 刪除數據 # sql = user.delete().where(user.c.id > 1) #更新數據 # sql = user.update().values(fullname=user.c.name) # sql = user.update().where(user.c.name == 'jack').values(name='ed') #查詢數據 # sql = select([user, ]) # sql = select([user.c.id, ]) # sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id) # sql = select([user.c.name]).order_by(user.c.name) # sql = select([user]).group_by(user.c.name) # 執行語句 # result = conn.execute(sql) # print(result.fetchall()) # conn.close()
一個完整的實例:ubuntu
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker Base = declarative_base() #生成一個SqlORM 基類 engine = create_engine("mysql+mysqldb://root@localhost:3306/test",echo=False) # 建立表的類 class Host(Base): __tablename__ = 'hosts' #表名 id = Column(Integer,primary_key=True,autoincrement=True) #字段 hostname = Column(String(64),unique=True,nullable=False) ip_addr = Column(String(128),unique=True,nullable=False) port = Column(Integer,default=22) Base.metadata.create_all(engine) #建立全部表結構 if __name__ == '__main__': SessionCls = sessionmaker(bind=engine) #建立與數據庫的會話session class ,注意,這裏返回給session的是個class,不是實例 session = SessionCls() # 數據語句 #h1 = Host(hostname='localhost',ip_addr='127.0.0.1') #h2 = Host(hostname='ubuntu',ip_addr='192.168.2.243',port=20000) #h3 = Host(hostname='ubuntu2',ip_addr='192.168.2.244',port=20000) # 執行一條語句 #session.add(h3) # 執行多條語句 #session.add_all( [h1,h2]) # 更新數據 #h2.hostname = 'ubuntu_test' #只要沒提交,此時修改也沒問題 #session.rollback() #回滾 #session.commit() #提交 # 查詢 res = session.query(Host).filter(Host.hostname.in_(['ubuntu2','localhost'])).all() print(res)
更多內容詳見: api
http://www.jianshu.com/p/e6bba189fcbd session
http://docs.sqlalchemy.org/en/latest/core/expression_api.html
注:SQLAlchemy沒法修改表結構,若是須要能夠使用SQLAlchemy開發者開源的另一個軟件Alembic來完成。
階段三,使用ORM,Schema Type,SQL Expression Language,Engine,ConnectionPooling,Dialect全部組件對數據進行操做。根據類建立對象,對象轉換成SQL,執行SQL。
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) Base = declarative_base() class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) #primary_key=True 表示不顯示執行過程 name = Column(String(50)) # 尋找Base的全部子類,按照子類的結構在數據庫中生成對應的數據表信息 # Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() # ########## 增 ########## # u = User(id=2, name='sb') # session.add(u) # session.add_all([ # User(id=3, name='sb'), # User(id=4, name='sb') # ]) # session.commit() # ########## 刪除 ########## # session.query(User).filter(User.id > 2).delete() # session.commit() # ########## 修改 ########## # session.query(User).filter(User.id > 2).update({'cluster_id' : 0}) # session.commit() # ########## 查 ########## # 只顯示查詢到的第一條結果 # ret = session.query(User).filter_by(name='sb').first() # 顯示全部查詢到的結果 # ret = session.query(User).filter_by(name='sb').all() # print(ret) #多條件查詢 # ret = session.query(User).filter(User.name.in_(['sb','bb'])).all() # print(ret) # ret = session.query(User.name.label('name_label')).all() # print(ret,type(ret)) #組 # ret = session.query(User).order_by(User.id).all() # print(ret) # ret = session.query(User).order_by(User.id)[1:3] # print(ret) # session.commit()
外鍵關聯:
from sqlalchemy import Table, Column, Integer, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
第一種辦法:
class Parent(Base): __tablename__ = 'parent' id = Column(Integer, primary_key=True) children = relationship("Child") #所關聯的表 class Child(Base): __tablename__ = 'child' id = Column(Integer, primary_key=True) parent_id = Column(Integer, ForeignKey('parent.id')) #關聯是雙向的,因此這裏也指定所關聯的字段
第二種辦法:
class Parent(Base): __tablename__ = 'parent' id = Column(Integer, primary_key=True) #children = relationship("Child", back_populates="parent") class Child(Base): __tablename__ = 'child' id = Column(Integer, primary_key=True) # parent_id = Column(Integer, ForeignKey('parent.id')) parent = relationship("Parent", back_populates="children") #這一條語句表明是雙向的關聯
class Parent(Base): __tablename__ = 'parent' id = Column(Integer, primary_key=True) children = relationship("Child", backref="parent") #能夠經過parent字段查詢所管理表的數據
inner join :返回表中全部匹配的行
left join:返回左邊表的全部行,以及右邊匹配的行
right join:返回右邊表的全部行,以及左邊匹配的行
原生SQL語句:
select host.id,hostname,ip_addr,port,host_group.name from host right join host_group on host.id = host_group.host_id;
SQLAchemy語句:
session.query(Host).join(Host.host_groups).filter(HostGroup.name=='t1').group_by("Host").all()
原生SQL:
select name,count(host.id) as NumberOfHosts from host right join host_group on host.id= host_group.host_id group by name;
SQLAchemy:
from sqlalchemy import func session.query(HostGroup, func.count(HostGroup.name )).group_by(HostGroup.name).all() #another example session.query(func.count(User.name), User.name).group_by(User.name).all() SELECT count(users.name) AS count_1, users.name AS users_name FROM users GROUP BY users.name