一、前言算法
正式開始的第一週的任務——把NOIP2010至NOIP2015的全部D1/2的T2/3寫出暴力。共22題。數組
暴力顧名思義,用簡單粗暴的方式解題,不以正常的思路思考。可以較好的保證正確性,可是最大的問題在於效率。搞OI這麼久,每次考試也常常糾結於暴力與正解之間,其實這二者概念上原本就沒有明顯的界限,是一組相對概念。網絡
下面儘量的不提到正解,可是若是正解容易到我都可以輕鬆秒的話就仍是說一下了。優化
普通的DFS/BFS搜索是暴力,但暴力不侷限於此。根據向總的話,記憶化搜索亦屬於暴力,名字逼格這麼高分數確定也高一些。什麼是記憶化搜索呢?ui
記憶化搜索就是把咱們以前搜索過的狀態保存下來,在以後搜索再遇到這種狀態時就能夠避免重複搜索,直接調用上次搜索的結果便可。記憶化搜索適用於重複子結構較多的題目。spa
這樣看上去貌似好熟悉。。。是啊很像動態規劃。。。ssr
我姑且把它理解爲以DFS的形式來實現的動態規劃吧,,,雖然向總始終說他不是動態規劃。code
Tips:(我寫的/暴力最佳方式/正解)blog
二、NOIP2010排序
② tourist 烏龜棋(?/記憶化搜索/動態規劃)
思路:30分暴力直接強行DFS跑全部狀況很少說了。考慮本題有一個特別的地方——重疊子結構不少,常常可能出現使用卡片個數相同可是順序不一樣的狀況。若是直接DFS的話,會浪費大量時間。因爲總狀態比較少,4張卡片每張只有至多40張,故能夠把全部狀態存入一個四維數組,f[a][b][c][d]表示在剩下a張1,b張2,c張3,d張4時能夠得到的最大分數。在DFS時若是遇到以前已經遇到過的狀態,進行比對,選取較大值轉移。這樣能夠省去大量時間,也就是所謂的記憶化搜索。然而一旦你把f[a][b][c][d]的狀態轉移方程寫出來就會發現。。和動態規劃有什麼區別呢。
代碼:
#include <cstdio> #include <cstring> #define MAXN 355 #define MAXM 45 int n, m, w[MAXN], x, t[5], f[MAXM][MAXM][MAXM][MAXM]; int max(int a, int b) { return a > b ? a : b; } int DFS(int o, int a, int b, int c, int d) { if (f[a][b][c][d] != -1) return f[a][b][c][d]; f[a][b][c][d] = 0; if (a) f[a][b][c][d] = max(DFS(o + 1, a - 1, b, c, d), f[a][b][c][d]); if (b) f[a][b][c][d] = max(DFS(o + 2, a, b - 1, c, d), f[a][b][c][d]); if (c) f[a][b][c][d] = max(DFS(o + 3, a, b, c - 1, d), f[a][b][c][d]); if (d) f[a][b][c][d] = max(DFS(o + 4, a, b, c, d - 1), f[a][b][c][d]); f[a][b][c][d] += w[o]; return f[a][b][c][d]; } int main() { freopen("tortoise.in", "r", stdin); freopen("tortoise.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &w[i]); for (int i = 1; i <= m; i++) scanf("%d", &x), t[x]++; memset(f, -1, sizeof(f)); printf("%d", DFS(1, t[1], t[2], t[3], t[4])); return 0; }
④ water 引水入城(?/BFS+枚舉/BFS+動態規劃)
思路:對於30分,題目明確是不能知足要求。。(我居然沒意識到這個的重要性)
三、NOIP2011
② hotel 選擇客棧(動態規劃/枚舉+前綴和/搜索+優化??)
代碼:
#include <cstdio> #define MAXN 200005 #define MAXK 65 int n, k, p, s, c, v, a[MAXN], f[MAXK][MAXN]; int main() { freopen("hotel.in", "r", stdin); freopen("hotel.out", "w", stdout); scanf("%d %d %d", &n, &k, &p); for (int i = 1; i <= n; i++) { scanf("%d %d", &c, &v); for (int j = 0; j < k; j++) f[j][i] = f[j][i - 1] + (j == c); s += (v <= p ? f[c][a[i] = i] - 1 : f[c][a[i] = a[i - 1]]); } printf("%d\n", s); return 0; }
③ mayan Mayan遊戲(搜索/搜索/搜索)
思路:太長不寫。噁心死了。
⑤ qc 聰明的質檢員(?/二分答案/二分答案)
思路:
代碼:
⑥ bus 觀光公交(?/最短路/貪心或網絡流)
思路:
代碼:
四、NOIP2012
② game 國王遊戲(貪心/貪心/貪心)
思路:這個貪心究竟是如何證實的仍是不清楚啊,之前作過因此知道怎麼貪心。可是我仍是耿直的寫了直接根據一隻手來貪心50分。感受題目好鬼。對了記得寫高精度。
50分代碼:
#include <cstdio> #include <algorithm> using namespace std; #define MAXN 1005 typedef long long ll; #ifdef WIN32 #define lld "%I64d" #else #define lld "%lld" #endif ll n, x0, y0, o, ans; struct Mst { ll x, y; } a[MAXN]; struct Cmp { bool operator () (Mst a, Mst b) { return a.y < b.y; } } x; int main() { freopen("game.in", "r", stdin); freopen("game.out", "w", stdout); scanf(lld lld lld, &n, &x0, &y0), o = x0; for (int i = 1; i <= n; i++) scanf(lld lld, &a[i].x, &a[i].y); sort(a + 1, a + n + 1, x); for (int i = 1; i <= n; i++) ans = max(ans, o / a[i].y), o *= a[i].x; printf(lld, ans); return 0; }
③ drive 開車旅行(?/枚舉/倍增+set)
思路:就枚舉吧。
⑤ classroom 借教室(線段樹/線段樹/二分答案+差分)
思路:30分模擬。能夠很明顯的看出來線段樹是很適合這道題的,只要常數不是很大,100分到手(我也不知道怎麼纔會把常數寫大)。
代碼:
#include <cstdio> #define MAXN 1000005 int n, m, c[MAXN], d[MAXN], x[MAXN], y[MAXN], get; struct Tree { int v, f; } t[MAXN * 4]; int min(int a, int b) { return a < b ? a : b; } void build(int o, int l, int r) { if (l == r) { t[o].v = c[l]; return; } int mid = (l + r) >> 1; build(o << 1, l, mid), build(o << 1 | 1, mid + 1, r); t[o].v = min(t[o << 1].v, t[o << 1 | 1].v); } void pushDown(int o) { t[o << 1].v -= t[o].f, t[o << 1 | 1].v -= t[o].f; t[o << 1].f += t[o].f, t[o << 1 | 1].f += t[o].f; t[o].f = 0; } void dec(int o, int l, int r, int ql, int qr, int v) { if (get) return; if (t[o].f) pushDown(o); if (l == ql && r == qr) { t[o].v -= v, t[o].f += v; if (t[o].v < 0) get = 1; return; } int mid = (l + r) >> 1; if (qr <= mid) dec(o << 1, l, mid, ql, qr, v); else if (ql >= mid + 1) dec(o << 1 | 1, mid + 1, r, ql, qr, v); else dec(o << 1, l, mid, ql, mid, v), dec(o << 1 | 1, mid + 1, r, mid + 1, qr, v); t[o].v = min(t[o << 1].v, t[o << 1 | 1].v); } int main() { freopen("classroom.in", "r", stdin); freopen("classroom.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &c[i]); build(1, 1, n); for (int i = 1; i <= m; i++) { scanf("%d %d %d", &d[i], &x[i], &y[i]); dec(1, 1, n, x[i], y[i], d[i]); if (get) { printf("-1\n%d", i); return 0; } } printf("0"); return 0; }
⑥ blockade 疫情控制(枚舉/枚舉/二分答案+貪心+倍增)
思路:20分枚舉。
代碼:
#include <cstdio> #include <algorithm> using namespace std; #define MAXN 10005 int n, u, v, w, m, a[MAXN]; int o, h[MAXN], vis[MAXN], res, b[MAXN], c[MAXN], btot, ctot; struct Edge { int v, next, w; } e[MAXN]; void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {v, h[u], w}, h[u] = o; } void DFS(int o, int fa) { for (int x = h[o]; x; x = e[x].next) { int v = e[x].v; if (v == fa) continue; if (a[v]) res += a[v]; DFS(v, o); } } int work() { for (int x = h[1]; x; x = e[x].next) { int v = e[x].v; res = a[v], DFS(v, 1); if (!res) b[++btot] = e[x].w; else if (res != 1) c[++ctot] = e[x].w * (res - 1); } sort(b + 1, b + btot + 1), sort(c + 1, c + ctot + 1); return b[1] + c[ctot]; } int main() { freopen("blockade.in", "r", stdin); freopen("blockade.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n - 1; i++) scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w), addEdge(v, u, w); scanf("%d", &m); for (int i = 1; i <= m; i++) scanf("%d", &o), a[o]++; printf("%d", work()); return 0; }
五、NOIP2013
② match 火柴排隊(樹狀數組+逆序對/枚舉/樹狀數組或歸併排序+逆序對)
思路:考慮給出的式子在什麼狀況下能夠得到最小值?兩列數組分別最大對最大,次大對次大……最小對最小。爲了達到這一局面,求逆序對就好了!(就好了。哦。)這個點確實考的很是偏啊,若是沒有提早看過的話怎麼作?
這個插下逆序對的概念:
代碼:
#include <cstdio> #include <algorithm> #define MAXN 100005 #define MOD 99999997 using namespace std; int n, a[MAXN], b[MAXN], ta[MAXN], tb[MAXN], c[MAXN], ans, tot[MAXN]; struct cmpa { bool operator () (int a,int b) { return (ta[a]<ta[b]); } } xa; struct cmpb { bool operator () (int a, int b) { return (tb[a] < tb[b]); } } xb; int lowbit(int o) { return o & -o; } void update(int o) { while (o <= n) tot[o]++, o += lowbit(o); } int getSum(int o) { int ans = 0; while (o) ans += tot[o], o -= lowbit(o); return ans; } int main() { freopen("match.in", "r", stdin); freopen("match.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &ta[i]), a[i] = i; for (int i = 1; i <= n; i++) scanf("%d", &tb[i]), b[i] = i; sort(a + 1, a + n + 1, xa), sort(b + 1, b + n + 1, xb); for (int i = 1; i <= n; i++) c[b[i]] = a[i]; for (int i = 1; i <= n; i++) update(c[i]), (ans += (i - getSum(c[i]))) %= MOD; printf("%d", ans); return 0; }
③ truck 貨車運輸(最大生成樹/SPFA+優化/最大生成樹+倍增)
思路:30分算法直接SPFA維護最長路,我用的30分是Kruskal維護最大生成樹,一條邊一條邊加進去進行判斷。。。然而這道題作到60分的暴力也不難——就是把這兩種30分算法綜合一下(what...)。當且僅當所選擇的邊在最大生成樹上的時候,能夠獲得最優解。故能夠事先求出最大生成樹,在最大生成樹上進行SPFA!蠢的想不到啊臥槽。100分的話,感受不是很難吧暫時沒寫,最大生成樹+樹上倍增LCA。
30分代碼:
#include <cstdio> #include <algorithm> #define MAXN 10005 #define MAXM 50005 #define INF 1 << 30 using namespace std; int n, u, v, w, q, o; int s, t, set[MAXN], m; struct Edge { int u, v, w; }; Edge e[MAXN * 2]; struct Cmp { bool operator () (Edge a, Edge b) { return (a.w > b.w); } } x; void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {u, v, w}; } int check(int x) { return (set[x] == x ? x : set[x] = check(set[x])); } int work() { int ans, get = 0; for (int i = 1; i <= m; i++) { if (check(s) == check(t)) { get = 1; break; } int c1 = check(e[i].u), c2 = check(e[i].v); if (c1 != c2) set[c1] = c2, ans = e[i].w; } return get ? ans : -1; } int main() { freopen("truck.in", "r", stdin); freopen("truck.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) scanf("%d %d %d", &u, &v, &w), addEdge(u, v, w); sort(e + 1, e + m + 1, x); scanf("%d", &q); while (q--) { scanf("%d %d", &s, &t); for (int i = 1; i <= n; i++) set[i] = i; printf("%d\n", work()); } return 0; }
60分代碼:
#include <cstdio> #include <string> #include <algorithm> using namespace std; #define MAXN 10005 #define MAXM 50005 #define INF 1 << 30 struct Tmp { int u, v, w; } te[MAXM]; struct Edge { int v, next, w; } e[MAXN]; struct Cmp { bool operator () (Tmp a, Tmp b) { return a.w > b.w; } } x; int n, m, t, u, v, w, o, head[MAXN], vis[MAXN], dis[MAXN], q[MAXN * 2], set[MAXN]; int check(int o) { return o == set[o] ? o : set[o] = check(set[o]); } void addEdge(int u, int v, int w) { o++, e[o] = (Edge) {v, head[u], w}, head[u] = o; } int SPFA(int x, int y) { int h = 1, t = 2; memset(vis, 0, sizeof(vis)), memset(dis, -1, sizeof(dis)); q[1] = x, vis[x] = 1, dis[x] = INF; while (h != t) { int o = q[h]; for (int x = head[o]; x; x = e[x].next) { int v = e[x].v; if (dis[v] < min(dis[o], e[x].w)) { dis[v] = min(dis[o], e[x].w); if (!vis[v]) vis[v] = 1, q[t] = v, t++; } } vis[o] = 0, h++; } return dis[y]; } int main() { freopen("truck.in", "r", stdin); freopen("truck.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) { scanf("%d %d %d", &u, &v, &w); te[i] = (Tmp) {u, v, w}; } sort(te + 1, te + m + 1, x); for (int i = 1; i <= n; i++) set[i] = i; for (int i = 1; i <= m; i++) { int u = te[i].u, v = te[i].v, w = te[i].w; int c1 = check(u), c2 = check(v); if (c1 != c2) set[c1] = c2, addEdge(u, v, w), addEdge(v, u, w); } scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%d %d", &u, &v), printf("%d\n", SPFA(u, v)); return 0; }
⑤ flower 花匠(貪心/貪心/動態規劃+優化)
思路:最想吐槽的一道題,。爲何正解會想到動態規劃。。不是說不可作,這擺明了的能夠貪心啊!雖然兩年前甚至是一年前都沒法很快的想到,可是一年以後的我把這道題當作新題再看一次的時候,實在是想不通爲何要去動態規劃的路線。。因此我寫了一個代碼量極短的貪心。
代碼:
#include <cstdio> #define MAXN 100005 int n, h[MAXN], t[2], o; int max(int a, int b) { return a > b ? a : b; } int main() { freopen("flower.in", "r", stdin); freopen("flower.out", "w", stdout); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); for (int j = 0; j <= 1; j++, o = j) for (int i = 2; i <= n; i++) if (o ? (h[i] > h[i - 1]) : (h[i] < h[i - 1])) o ^= 1, t[o]++; printf("%d", max(t[0], t[1]) + 1); return 0; }
⑥ puzzle 華容道(BFS+少許優化?/BFS/BFS+SPFA)
思路:直接寫了BFS,聽說是60分,可是最後得了70分。
70分代碼:
#include <cstdio> #include <cstring> #define MAXN 35 const int vx[4] = {0, 0, 1, -1}, vy[4] = {1, -1, 0, 0}; int n, m, t, a[MAXN][MAXN], vis[MAXN][MAXN][MAXN][MAXN]; int ex, ey, sx, sy, tx, ty; struct Queue { int x, y, ox, oy, d; } q[MAXN * MAXN * MAXN * MAXN]; int BFS() { int h = 1, t = 2; q[1] = (Queue) {ex, ey, sx, sy, 0}; while (h != t) { for (int i = 0; i <= 3; i++) { int nx = q[h].x + vx[i], ny = q[h].y + vy[i]; if (nx == q[h].ox && ny == q[h].oy) { q[t].ox = q[h].x, q[t].oy = q[h].y; if (q[t].ox == tx && q[t].oy == ty) return q[h].d + 1; } else q[t].ox = q[h].ox, q[t].oy = q[h].oy; if (!a[nx][ny] || vis[nx][ny][q[t].ox][q[t].oy]) continue; vis[nx][ny][q[t].ox][q[t].oy] = 1; q[t].x = nx, q[t].y = ny, q[t].d = q[h].d + 1; t++; } h++; } return -1; } int main() { freopen("puzzle.in", "r", stdin); freopen("puzzle.out", "w", stdout); scanf("%d %d %d", &n, &m, &t); for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d", &a[i][j]); for (int i = 1; i <= t; i++) { memset(vis, 0, sizeof(vis)); scanf("%d %d %d %d %d %d", &ex, &ey, &sx, &sy, &tx, &ty); vis[ex][ey][sx][sy] = 1; printf("%d\n", sx == tx && sy == ty ? 0 :BFS()); } return 0; }
六、NOIP2014
② link 聯合權值(BFS/BFS/樹形動態規劃)
思路:如今來看仍是NOIP2014的題最良心。。。直接根據點與點之間的關係找出全部距離爲2的點對,最後再統計權值便可。記得開long long。
代碼:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAXN 200005 #define MOD 10007 #ifdef WIN32 #define lld "%I64d" #else #define lld "%lld" #endif typedef long long ll; ll h[MAXN], w[MAXN], tot[MAXN], n, u, v, o, ans, maxv; struct edge { ll v, next; } e[MAXN * 2]; void add(ll u, ll v) { o++, e[o] = (edge) {v, h[u]}, h[u] = o; } void work(ll x, ll fa) { ll sonv = 0, tmax = 0, vmax; for (ll o = h[x]; o; o = e[o].next) { ll v = e[o].v; sonv += w[v]; if (tmax < w[v]) tmax = w[v], vmax = v; } for (ll o = h[x]; o; o = e[o].next) { ll v = e[o].v; if (v == fa) continue; if (v != vmax) maxv = max(maxv, tmax * w[v]); tot[v] += w[fa] + sonv - w[v], work(v, x); maxv = max(maxv, w[v] * w[fa]); } } int main() { freopen("link.in", "r", stdin); freopen("link.out", "w", stdout); scanf(lld, &n); for (ll i = 1; i < n; i++) scanf(lld " " lld, &u, &v), add(u, v), add(v, u); for (ll i = 1; i <= n; i++) scanf(lld, &w[i]); work(1, 0); for (ll i = 1; i <= n; i++) (ans += w[i] * tot[i]) %= MOD; printf(lld " " lld, maxv, ans); return 0; }
③ bird 飛揚的小鳥(動態規劃/記憶化搜索/動態規劃)
思路:這個題搜索分高的有點過度啊(固然我也是受益者之一)。其實題目自己沒有太多難度,不管是搜索仍是記憶化搜索仍是動態規劃,最要注意的部分就是上界的特判。
代碼:
#include <cstdio> #define MAXN 10005 #define MAXM 1005 #define INF 0x3f3f3f3f int n, m, k, x[MAXN], y[MAXN], u[MAXN], d[MAXN], f[MAXN][MAXM], ans = INF, cnt; int min(int a, int b) { return a < b ? a : b; } int main() { freopen("bird.in", "r", stdin); freopen("bird.out", "w", stdout); scanf("%d %d %d", &n, &m, &k); for (int i = 0; i < n; i++) scanf("%d %d", &x[i], &y[i]); for (int i = 0; i <= n; i++) u[i] = m + 1; for (int i = 1; i <= k; i++) { int o; scanf("%d", &o), scanf("%d %d", &d[o], &u[o]); } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { f[i][j] = INF; if (j > x[i - 1]) f[i][j] = min(f[i][j], min(f[i - 1][j - x[i - 1]], f[i][j - x[i - 1]]) + 1); } for (int j = m - x[i - 1]; j <= m; j++) f[i][m] = min(f[i][m], min(f[i - 1][j], f[i][j]) + 1); for (int j = d[i] + 1; j <= u[i] - 1; j++) if (j + y[i - 1] <= m) f[i][j] = min(f[i][j], f[i - 1][j + y[i - 1]]); for (int j = 1; j <= d[i]; j++) f[i][j] = INF; for (int j = u[i]; j <= m; j++) f[i][j] = INF; int get = 0; for (int j = 1; j <= m ; j++) if (f[i][j] != INF) { get = 1; break; } if (!get) { printf("0\n%d", cnt); return 0; } else if (u[i] != m + 1) cnt++; } for (int i = 1; i <= m; i++) ans = min(ans, f[n][i]); printf("1\n%d", ans); return 0; }
⑤ road 尋找道路(搜索/搜索/搜索)
思路:來自day2的水題。正序逆序各對圖進行一次掃描,用DFS/BFS/SPFA都可。
代碼:
#include <cstdio> #include <cstring> #define MAXN 10005 #define MAXM 200005 #define INF 0x3f3f3f3f int n, m, u, v, st, en, head[2][MAXN], o[2], dep[MAXN], vis[MAXN]; struct edge { int v, next; } e[2][MAXM]; void add(int u, int v, int x) { o[x]++, e[x][o[x]] = (edge) {v, head[x][u]}, head[x][u] = o[x]; } void init() { freopen("road.in", "r", stdin); freopen("road.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= m; i++) scanf("%d %d", &u, &v), add(u, v, 0), add(v, u, 1); scanf("%d %d", &st, &en); memset(dep, INF, sizeof(dep)); } void BFS1() { int q[MAXN], h = 1, t = 2; q[1] = en, vis[en] = 1; while (h != t) { int o = q[h]; for (int x = head[1][o]; x; x = e[1][x].next) { int v = e[1][x].v; if (vis[v]) continue; vis[v] = 1, q[t] = v, t++; } h++; } } void BFS2() { int q[MAXN], h = 1, t = 2; q[1] = st, dep[st] = 0; while (h != t) { int o = q[h], no = 0; for (int x = head[0][o]; x; x = e[0][x].next) { int v = e[0][x].v; if (!vis[v]) { no = 1; break; } } if (!no) for (int x = head[0][o]; x; x = e[0][x].next) { int v = e[0][x].v; if (dep[v] > dep[q[h]] + 1) q[t] = v, t++, dep[v] = dep[q[h]] + 1; } h++; } } int main() { init(), BFS1(), BFS2(); if (dep[en] != INF) printf("%d", dep[en]); else printf("-1"); return 0; }
⑥ equation 解方程(搜索/搜索/搜索+Hash+取模)
思路:30分從頭搜到尾。。。50分是高精度吧,沒時間寫就沒有寫了。聽說搜索+取模能夠省去高精度直接AC?如今應該不是研究這個的時候了。。。我只寫了30分的。
30分代碼:
#include <cstdio> #define MAXN 105 int n, m, a[MAXN], tot = 0, ans[MAXN]; int main() { freopen("equation.in", "r", stdin); freopen("equation.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 0; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= m; i++) { int x = 1, o = 0; for (int j = 0; j <= n; j++) o += a[j] * x, x *= i; if (o == 0) ans[tot++] = i; } printf("%d\n", tot); for (int i = 0; i < tot; i++) printf("%d\n", ans[i]); return 0; }
七、NOIP2015
呵呵噠。你敢信我對這一年的題目什麼印象都沒有。。他們在那裏講信息傳遞的時候我一臉懵逼。確實一點都不想回憶這個,因此15年的我一道題都沒有去作。
② message 信息傳遞
③ landlords 鬥地主
⑤ substring 子串
⑥ transport 運輸計劃