本節內容html
協程,又稱微線程,纖程。英文名Coroutine。一句話說明什麼是線程:協程是一種用戶態的輕量級線程。python
協程擁有本身的寄存器上下文和棧。協程調度切換時,將寄存器上下文和棧保存到其餘地方,在切回來的時候,恢復先前保存的寄存器上下文和棧。所以:程序員
協程能保留上一次調用時的狀態(即全部局部狀態的一個特定組合),每次過程重入時,就至關於進入上一次調用的狀態,換種說法:進入上一次離開時所處邏輯流的位置。sql
協程的好處:數據庫
缺點:編程
使用yield實現協程操做例子 數組
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import
time
import
queue
def
consumer(name):
print
(
"--->starting eating baozi..."
)
while
True
:
new_baozi
=
yield
print
(
"[%s] is eating baozi %s"
%
(name,new_baozi))
#time.sleep(1)
def
producer():
r
=
con.__next__()
r
=
con2.__next__()
n
=
0
while
n <
5
:
n
+
=
1
con.send(n)
con2.send(n)
print
(
"\033[32;1m[producer]\033[0m is making baozi %s"
%
n )
if
__name__
=
=
'__main__'
:
con
=
consumer(
"c1"
)
con2
=
consumer(
"c2"
)
p
=
producer()
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from
greenlet
import
greenlet
def
test1():
print
12
gr2.switch()
print
34
gr2.switch()
def
test2():
print
56
gr1.switch()
print
78
gr1
=
greenlet(test1)
gr2
=
greenlet(test2)
gr1.switch()
|
Gevent 是一個第三方庫,能夠輕鬆經過gevent實現併發同步或異步編程,在gevent中用到的主要模式是Greenlet, 它是以C擴展模塊形式接入Python的輕量級協程。 Greenlet所有運行在主程序操做系統進程的內部,但它們被協做式地調度。安全
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import
gevent
def
foo():
print
(
'Running in foo'
)
gevent.sleep(
0
)
print
(
'Explicit context switch to foo again'
)
def
bar():
print
(
'Explicit context to bar'
)
gevent.sleep(
0
)
print
(
'Implicit context switch back to bar'
)
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
|
輸出:網絡
Running in foo Explicit context to bar Explicit context switch to foo again Implicit context switch back to bar
同步與異步的性能區別 多線程
上面程序的重要部分是將task函數封裝到Greenlet內部線程的gevent.spawn
。 初始化的greenlet列表存放在數組threads
中,此數組被傳給gevent.joinall
函數,後者阻塞當前流程,並執行全部給定的greenlet。執行流程只會在 全部greenlet執行完後纔會繼續向下走。
遇到IO阻塞時會自動切換任務
經過gevent實現單線程下的多socket併發
server side
client side
事件驅動編程是一種編程範式,這裏程序的執行流由外部事件來決定。它的特色是包含一個事件循環,當外部事件發生時使用回調機制來觸發相應的處理。另外兩種常見的編程範式是(單線程)同步以及多線程編程。
讓咱們用例子來比較和對比一下單線程、多線程以及事件驅動編程模型。下圖展現了隨着時間的推移,這三種模式下程序所作的工做。這個程序有3個任務須要完成,每一個任務都在等待I/O操做時阻塞自身。阻塞在I/O操做上所花費的時間已經用灰色框標示出來了。
在單線程同步模型中,任務按照順序執行。若是某個任務由於I/O而阻塞,其餘全部的任務都必須等待,直到它完成以後它們才能依次執行。這種明確的執 行順序和串行化處理的行爲是很容易推斷得出的。若是任務之間並無互相依賴的關係,但仍然須要互相等待的話這就使得程序沒必要要的下降了運行速度。
在多線程版本中,這3個任務分別在獨立的線程中執行。這些線程由操做系統來管理,在多處理器系統上能夠並行處理,或者在單處理器系統上交錯執行。這 使得當某個線程阻塞在某個資源的同時其餘線程得以繼續執行。與完成相似功能的同步程序相比,這種方式更有效率,但程序員必須寫代碼來保護共享資源,防止其 被多個線程同時訪問。多線程程序更加難以推斷,由於這類程序不得不經過線程同步機制如鎖、可重入函數、線程局部存儲或者其餘機制來處理線程安全問題,若是 實現不當就會致使出現微妙且使人痛不欲生的bug。
在事件驅動版本的程序中,3個任務交錯執行,但仍然在一個單獨的線程控制中。當處理I/O或者其餘昂貴的操做時,註冊一個回調到事件循環中,而後當 I/O操做完成時繼續執行。回調描述了該如何處理某個事件。事件循環輪詢全部的事件,當事件到來時將它們分配給等待處理事件的回調函數。這種方式讓程序盡 可能的得以執行而不須要用到額外的線程。事件驅動型程序比多線程程序更容易推斷出行爲,由於程序員不須要關心線程安全問題。
當咱們面對以下的環境時,事件驅動模型一般是一個好的選擇:
當應用程序須要在任務間共享可變的數據時,這也是一個不錯的選擇,由於這裏不須要採用同步處理。
網絡應用程序一般都有上述這些特色,這使得它們可以很好的契合事件驅動編程模型。
selectors模塊
This module allows high-level and efficient I/O multiplexing, built upon the select
module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
import
selectors
import
socket
sel
=
selectors.DefaultSelector()
def
accept(sock, mask):
conn, addr
=
sock.accept()
# Should be ready
print
(
'accepted'
, conn,
'from'
, addr)
conn.setblocking(
False
)
sel.register(conn, selectors.EVENT_READ, read)
def
read(conn, mask):
data
=
conn.recv(
1000
)
# Should be ready
if
data:
print
(
'echoing'
,
repr
(data),
'to'
, conn)
conn.send(data)
# Hope it won't block
else
:
print
(
'closing'
, conn)
sel.unregister(conn)
conn.close()
sock
=
socket.socket()
sock.bind((
'localhost'
,
10000
))
sock.listen(
100
)
sock.setblocking(
False
)
sel.register(sock, selectors.EVENT_READ, accept)
while
True
:
events
=
sel.select()
for
key, mask
in
events:
callback
=
key.data
callback(key.fileobj, mask)
|