Redis的列表對象底層所使用的數據結構其中之一就是list。html
Redis的list是一個雙端鏈表,其由3部分構成:鏈表節點、鏈表迭代器、鏈表。這一設計思想和STL的list是同樣的,STL的list也是由這三部分組成。須要特別說明的是Redis用C語言實現了list的迭代器,比較巧妙,下面就來分析list源碼。node
list節點c++
節點的值爲void*類型,從而能夠保存不一樣類型的值,甚至是另外一種類型的對象。redis
// 雙端鏈表的節點 typedef struct listNode { struct listNode *prev; // 指向上一個節點 struct listNode *next; // 指向下一個節點 void *value; // 指向節點的值, void*類型,使得節點能夠保存不一樣類型的值 } listNode;
list迭代器數據結構
c語言實現c++中的迭代器;雙端鏈表的迭代器,方便了遍歷鏈表的操做;根據direction,可設置爲前向/反向迭代器ide
typedef struct listIter { listNode *next; // 指向迭代器方向上下一個鏈表結點 int direction; // AL_START_HEAD=0:從頭部往尾部方向移動;AL_START_TAIL=1:往尾部往頭部方向移動 } listIter;
其中direction的取值有:函數
/* Directions for iterators */ // 迭代器方向的宏定義 #define AL_START_HEAD 0 #define AL_START_TAIL 1
listspa
與通常設計相似,list中有指向頭尾節點的指針,以及鏈表節點數量的計數。不一樣的是,因爲鏈表節點爲void*類型,被設計爲能夠存儲不一樣類型的數據,甚至是另外一種類型的對象,因此添加了與節點相關的3個函數,做用分別是複製、釋放、比較節點的值。設計
// 雙端鏈表 typedef struct list { listNode *head; // 指向鏈表頭節點 listNode *tail; // 指向鏈表尾節點 void *(*dup)(void *ptr); // 複製鏈表節點所保存的值 void (*free)(void *ptr); // 釋放鏈表節點所保存的值 int (*match)(void *ptr, void *key); // 節點值比較函數 unsigned long len; // 鏈表的節點數目 } list;
Redis用宏定義實現了一些複雜度爲O(1)的鏈表操做,以提升list操做的效率。指針
/* Functions implemented as macros */ // 經過宏來實現一些O(1)時間複雜度的函數 #define listLength(l) ((l)->len) #define listFirst(l) ((l)->head) #define listLast(l) ((l)->tail) #define listPrevNode(n) ((n)->prev) #define listNextNode(n) ((n)->next) #define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m)) #define listSetFreeMethod(l,m) ((l)->free = (m)) #define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup) #define listGetFree(l) ((l)->free) #define listGetMatchMethod(l) ((l)->match)
list的源碼比較好理解,本人對其已經作了詳細的註釋,就不仔細介紹了,下面附上源碼及註釋。list相關的文件有兩個:adlist.h, adlist.c
adlist.h
#ifndef __ADLIST_H__ #define __ADLIST_H__ /* Node, List, and Iterator are the only data structures used currently. */ // redis的鏈表爲雙端鏈表 // 節點的值爲void*類型,從而能夠保存不一樣類型的值 // 結合dup,free,match函數實現鏈表的多態 // 雙端鏈表的節點 typedef struct listNode { struct listNode *prev; // 指向上一個節點 struct listNode *next; // 指向下一個節點 void *value; // 指向節點的值, void*類型,使得節點能夠保存不一樣類型的值 } listNode; // c語言實現c++中的迭代器!!! // 雙端鏈表的迭代器,方便了遍歷鏈表的操做 // 根據direction,可設置爲前向/反向迭代器 typedef struct listIter { listNode *next; // 指向迭代器方向上下一個鏈表結點 int direction; // AL_START_HEAD=0:從頭部往尾部方向移動;AL_START_TAIL=1:往尾部往頭部方向移動 } listIter; // 雙端鏈表 typedef struct list { listNode *head; // 指向鏈表頭節點 listNode *tail; // 指向鏈表尾節點 void *(*dup)(void *ptr); // 複製鏈表節點所保存的值 void (*free)(void *ptr); // 釋放鏈表節點所保存的值 int (*match)(void *ptr, void *key); // 節點值比較函數 unsigned long len; // 鏈表的節點數目 } list; /* Functions implemented as macros */ // 經過宏來實現一些O(1)時間複雜度的函數 #define listLength(l) ((l)->len) #define listFirst(l) ((l)->head) #define listLast(l) ((l)->tail) #define listPrevNode(n) ((n)->prev) #define listNextNode(n) ((n)->next) #define listNodeValue(n) ((n)->value) #define listSetDupMethod(l,m) ((l)->dup = (m)) #define listSetFreeMethod(l,m) ((l)->free = (m)) #define listSetMatchMethod(l,m) ((l)->match = (m)) #define listGetDupMethod(l) ((l)->dup) #define listGetFree(l) ((l)->free) #define listGetMatchMethod(l) ((l)->match) /* Prototypes */ // list數據結構相關的函數 // 具體含義見adlist.c list *listCreate(void); void listRelease(list *list); list *listAddNodeHead(list *list, void *value); list *listAddNodeTail(list *list, void *value); list *listInsertNode(list *list, listNode *old_node, void *value, int after); void listDelNode(list *list, listNode *node); listIter *listGetIterator(list *list, int direction); listNode *listNext(listIter *iter); void listReleaseIterator(listIter *iter); list *listDup(list *orig); listNode *listSearchKey(list *list, void *key); listNode *listIndex(list *list, long index); void listRewind(list *list, listIter *li); void listRewindTail(list *list, listIter *li); void listRotate(list *list); /* Directions for iterators */ // 迭代器方向的宏定義 #define AL_START_HEAD 0 #define AL_START_TAIL 1 #endif /* __ADLIST_H__ */
adlist.c
/* adlist.c - A generic doubly linked list implementation */ #include <stdlib.h> #include "adlist.h" #include "zmalloc.h" /* Create a new list. The created list can be freed with * AlFreeList(), but private value of every node need to be freed * by the user before to call AlFreeList(). * * On error, NULL is returned. Otherwise the pointer to the new list. */ // 建立一個鏈表 // 返回值:list/NULL list *listCreate(void) { struct list *list; if ((list = zmalloc(sizeof(*list))) == NULL) // 爲鏈表分配內存 return NULL; // 初始化鏈表結構體的成員 list->head = list->tail = NULL; list->len = 0; list->dup = NULL; list->free = NULL; list->match = NULL; return list; // 返回爲新鏈表分配的內存的起始地址 } /* Free the whole list. * * This function can't fail. */ // 釋放鏈表及鏈表節點 void listRelease(list *list) { unsigned long len; listNode *current, *next; current = list->head; len = list->len; while(len--) { next = current->next; if (list->free) list->free(current->value); // 釋放鏈表節點的值 zfree(current); // 釋放鏈表節點 current = next; } zfree(list); // 釋放鏈表 } /* Add a new node to the list, to head, containing the specified 'value' * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the 'list' pointer you pass to the function is returned. */ // 從雙端鏈表的頭部插入新節點 // 返回值:list/NULL list *listAddNodeHead(list *list, void *value) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (list->len == 0) { // 原鏈表爲一空鏈表 list->head = list->tail = node; node->prev = node->next = NULL; } else { // 插入到雙端鏈表的頭結點以前 node->prev = NULL; node->next = list->head; list->head->prev = node; list->head = node; } list->len++; return list; } /* Add a new node to the list, to tail, containing the specified 'value' * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the 'list' pointer you pass to the function is returned. */ // 從雙端鏈表的尾部插入新節點 // 返回值:list/NULL list *listAddNodeTail(list *list, void *value) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (list->len == 0) { list->head = list->tail = node; node->prev = node->next = NULL; } else { node->prev = list->tail; node->next = NULL; list->tail->next = node; list->tail = node; } list->len++; return list; } // 在鏈表list的節點old_node的前或後插入新節點 // after爲0,則在old_node以前插入;不然,在old_node以後插入 // 返回值:list/NULL list *listInsertNode(list *list, listNode *old_node, void *value, int after) { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) return NULL; node->value = value; if (after) { // old_node以後插入 node->prev = old_node; node->next = old_node->next; if (list->tail == old_node) { list->tail = node; } } else { // old_node以前插入 node->next = old_node; node->prev = old_node->prev; if (list->head == old_node) { list->head = node; } } if (node->prev != NULL) { node->prev->next = node; } if (node->next != NULL) { node->next->prev = node; } list->len++; return list; } /* Remove the specified node from the specified list. * It's up to the caller to free the private value of the node. * * This function can't fail. */ // 刪除鏈表list中節點node void listDelNode(list *list, listNode *node) { if (node->prev) node->prev->next = node->next; else list->head = node->next; if (node->next) node->next->prev = node->prev; else list->tail = node->prev; if (list->free) list->free(node->value); zfree(node); list->len--; } /* Returns a list iterator 'iter'. After the initialization every * call to listNext() will return the next element of the list. * * This function can't fail. */ // 返回鏈表的迭代器 // 返回值:list/NULL listIter *listGetIterator(list *list, int direction) { listIter *iter; if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL; if (direction == AL_START_HEAD) iter->next = list->head; // 設置爲前向迭代器 else iter->next = list->tail; // 設置爲反向迭代器 iter->direction = direction; return iter; } /* Release the iterator memory */ // 釋放迭代器的內存 void listReleaseIterator(listIter *iter) { zfree(iter); } /* Create an iterator in the list private iterator structure */ // 迴繞迭代器到鏈表頭部 void listRewind(list *list, listIter *li) { li->next = list->head; li->direction = AL_START_HEAD; } // 迴繞迭代器到鏈表尾部 void listRewindTail(list *list, listIter *li) { li->next = list->tail; li->direction = AL_START_TAIL; } /* Return the next element of an iterator. * It's valid to remove the currently returned element using * listDelNode(), but not to remove other elements. * * The function returns a pointer to the next element of the list, * or NULL if there are no more elements, so the classical usage patter * is: * * iter = listGetIterator(list,<direction>); * while ((node = listNext(iter)) != NULL) { * doSomethingWith(listNodeValue(node)); * } * * */ // 返回迭代器所指向的元素,並將迭代器往其方向上移動一步 // 返回值:指向當前節點的指針/NULL listNode *listNext(listIter *iter) { listNode *current = iter->next; if (current != NULL) { if (iter->direction == AL_START_HEAD) iter->next = current->next; else iter->next = current->prev; } return current; } /* Duplicate the whole list. On out of memory NULL is returned. * On success a copy of the original list is returned. * * The 'Dup' method set with listSetDupMethod() function is used * to copy the node value. Otherwise the same pointer value of * the original node is used as value of the copied node. * * The original list both on success or error is never modified. */ // 複製輸入鏈表 // list*/NULL list *listDup(list *orig) { list *copy; listIter iter; listNode *node; if ((copy = listCreate()) == NULL) // 建立新鏈表 return NULL; copy->dup = orig->dup; copy->free = orig->free; copy->match = orig->match; listRewind(orig, &iter); // 迴繞迭代器到鏈表頭部 while((node = listNext(&iter)) != NULL) { // 遍歷原鏈表,順序取出節點 void *value; if (copy->dup) { value = copy->dup(node->value); // 經過list.dup函數複製節點值 if (value == NULL) { listRelease(copy); // 出錯釋放鏈表 return NULL; } } else value = node->value; if (listAddNodeTail(copy, value) == NULL) { // 重新鏈表尾部插入值 listRelease(copy); // 出錯釋放鏈表 return NULL; } } return copy; } /* Search the list for a node matching a given key. * The match is performed using the 'match' method * set with listSetMatchMethod(). If no 'match' method * is set, the 'value' pointer of every node is directly * compared with the 'key' pointer. * * On success the first matching node pointer is returned * (search starts from head). If no matching node exists * NULL is returned. */ // 返回鏈表中節點值與key相匹配的節點 // listNode*/NULL listNode *listSearchKey(list *list, void *key) { listIter iter; listNode *node; listRewind(list, &iter); while((node = listNext(&iter)) != NULL) { if (list->match) { if (list->match(node->value, key)) { // 調用list.match函數對節點值進行比較 return node; } } else { if (key == node->value) { return node; } } } return NULL; } /* Return the element at the specified zero-based index * where 0 is the head, 1 is the element next to head * and so on. Negative integers are used in order to count * from the tail, -1 is the last element, -2 the penultimate * and so on. If the index is out of range NULL is returned. */ // 返回給定索引位置的節點 // index=0,返回頭結點 // index < 0,則從尾部開始返回,index = -1,返回尾部節點 listNode *listIndex(list *list, long index) { listNode *n; if (index < 0) { index = (-index)-1; n = list->tail; while(index-- && n) n = n->prev; } else { n = list->head; while(index-- && n) n = n->next; } return n; } /* Rotate the list removing the tail node and inserting it to the head. */ // 將尾部節點彈出,插入到鏈表頭節點以前,成爲新的表頭節點 void listRotate(list *list) { listNode *tail = list->tail; if (listLength(list) <= 1) return; /* Detach current tail */ list->tail = tail->prev; list->tail->next = NULL; /* Move it as head */ list->head->prev = tail; tail->prev = NULL; tail->next = list->head; list->head = tail; }
(全文完)