spark 自定義partitioner分區 java版

在遍歷spark dataset的時候,一般會使用 forpartition 在每一個分區內進行遍歷,而在默認分區(由生成dataset時的分區決定)可能因數據分佈緣由致使datasetc處理時的數據傾斜,形成整個dataset處理緩慢,發揮不了spark多executor(jvm 進程)多partition(線程)的並行處理能力,所以,廣泛的作法是在dataset遍歷以前使用repartition進行從新分區,讓數據按照指定的key進行分區,充分發揮spark的並行處理能力,例如:java

dataset.repartition(9,new Column("name")).foreachPartition(it -> {
			while (it.hasNext()) {
				Row row = it.next();
				....
			}
		});

先看一下準備的原始數據集:mysql

按照上面的代碼,預想的結果應該是,相同名字在記錄在同個partition(分區),不一樣名字在不一樣的partition,而且一個partition裏面不會有不一樣名字的記錄,而實際分區倒是這樣的sql

(查看分區分佈狀況的代碼在以前一篇文章 spark sql 在mysql的應用實踐 有說明,若是調用reparation時未指定分區數量9,則默認爲200,使用 spark.default.parallelism 配置的數量爲分區數,在partitioner.scala 的 partition object 定義能夠看到)express

這個很囧...乍看一下,壓根看不出什麼狀況,翻看源碼發現,rdd 的partition 分區器有兩種 HashPartitioner & RangePartitioner,默認狀況下使用 HashPartitioner,從 repartition 源碼開始入手apache

/**  
   * Dataset.scala 
   * Returns a new Dataset partitioned by the given partitioning expressions into
   * `numPartitions`. The resulting Dataset is hash partitioned.
   *
   * This is the same operation as "DISTRIBUTE BY" in SQL (Hive QL).
   *
   * @group typedrel
   * @since 2.0.0
   */
  @scala.annotation.varargs
  def repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T] = withTypedPlan {
    RepartitionByExpression(partitionExprs.map(_.expr), logicalPlan, Some(numPartitions))
  }

The resulting Dataset is hash partitioned,說的很清楚,使用hash 分區,那看看hash 分區的源碼,api

/**
 * Partitioner.scala
 * A [[org.apache.spark.Partitioner]] that implements hash-based partitioning using
 * Java's `Object.hashCode`.
 *
 * Java arrays have hashCodes that are based on the arrays' identities rather than their contents,
 * so attempting to partition an RDD[Array[_]] or RDD[(Array[_], _)] using a HashPartitioner will
 * produce an unexpected or incorrect result.
 */
class HashPartitioner(partitions: Int) extends Partitioner {
  require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")

  def numPartitions: Int = partitions

  def getPartition(key: Any): Int = key match {
    case null => 0
    case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
  }

  override def equals(other: Any): Boolean = other match {
    case h: HashPartitioner =>
      h.numPartitions == numPartitions
    case _ =>
      false
  }

  override def hashCode: Int = numPartitions
}

Utils.nonNegativeMod(key.hashCode, numPartitions) 說明在獲取當前row所在分區時,用了分區key的hashCode做爲實際分區的key值,在看看 nonNegativeModapp

/* Calculates 'x' modulo 'mod', takes to consideration sign of x,
  * i.e. if 'x' is negative, than 'x' % 'mod' is negative too
  * so function return (x % mod) + mod in that case.
  */
  def nonNegativeMod(x: Int, mod: Int): Int = {
    val rawMod = x % mod
    rawMod + (if (rawMod < 0) mod else 0)
  }

看到這裏,前面的相同分區存在不一樣的 name 的記錄就不難理解了,不一樣的name值hashCode%分區數後落到相同的分區... 簡單的調整方式,在遍歷分區裏面用hashMap兼容不一樣name值的記錄處理,那若是咱們想自定義分區呢,自定義分組分區代碼寫起來就比較直觀容易理解,幸虧spark提供了partitioner接口,能夠自定義partitioner,支持這種自定義分組分區的方式,這裏我也有個簡單實現類,能夠支持同個分區只有相同name的記錄jvm

import org.apache.commons.collections.CollectionUtils;
import org.apache.spark.Partitioner;
import org.junit.Assert;

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * Created by lesly.lai on 2018/7/25.
 */
public class CuxGroupPartitioner extends Partitioner {

	private int partitions;

	/**
	 * map<key, partitionIndex>
	 * 主要爲了區分不一樣分區
	 */
	private Map<Object, Integer> hashCodePartitionIndexMap = new ConcurrentHashMap<>();

	public CuxGroupPartitioner(List<Object> groupList) {
		int size = groupList.size();
		this.partitions = size;
		initMap(partitions, groupList);
	}

	private void initMap(int size, List<Object> groupList) {
		Assert.assertTrue(CollectionUtils.isNotEmpty(groupList));
		for (int i=0; i<size; i++) {
			hashCodePartitionIndexMap.put(groupList.get(i), i);
		}
	}

	@Override
	public int numPartitions() {
		return partitions;
	}

	@Override
	public int getPartition(Object key) {
		return hashCodePartitionIndexMap.get(key);
	}

	public boolean equals(Object obj) {
		if (obj instanceof CuxGroupPartitioner) {
			return ((CuxGroupPartitioner) obj).partitions == partitions;
		}
		return false;
	}
}

查看分區分佈狀況工具類ide

import org.apache.spark.sql.{Dataset, Row}

/**
  * Created by lesly.lai on 2017/12FeeTask/25.
  */
class SparkRddTaskInfo {
  def getTask(dataSet: Dataset[Row]) {
    val size = dataSet.rdd.partitions.length
    println(s"==> partition size: $size " )
    import scala.collection.Iterator
    val showElements = (it: Iterator[Row]) => {
      val ns = it.toSeq
      import org.apache.spark.TaskContext
      val pid = TaskContext.get.partitionId
      println(s"[partition: $pid][size: ${ns.size}] ${ns.mkString(" ")}")
    }
    dataSet.foreachPartition(showElements)
  }
}

調用方式工具

import com.vip.spark.db.ConnectionInfos;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;

import java.util.List;
import java.util.stream.Collectors;

/**
 * Created by lesly.lai on 2018/7/23.
 */
public class SparkSimpleTestPartition {
	public static void main(String[] args) throws InterruptedException {
	
		SparkSession sparkSession = SparkSession.builder().appName("Java Spark SQL basic example").getOrCreate();
		// 原始數據集
		Dataset<Row> originSet = sparkSession.read().jdbc(ConnectionInfos.TEST_MYSQL_CONNECTION_URL, "people", ConnectionInfos.getTestUserAndPasswordProperties());
		originSet.createOrReplaceTempView("people");
		// 獲取分區分佈狀況工具類
		SparkRddTaskInfo taskInfo = new SparkRddTaskInfo();
		Dataset<Row> groupSet = sparkSession.sql(" select name from people group by name");
		List<Object> groupList = groupSet.javaRDD().collect().stream().map(row -> row.getAs("name")).collect(Collectors.toList());
		// 建立pairRDD 目前只有pairRdd支持自定義partitioner,因此須要先轉成pairRdd
		JavaPairRDD pairRDD = originSet.javaRDD().mapToPair(row -> {
			return new Tuple2(row.getAs("name"), row);
		});
		// 指定自定義partitioner
		JavaRDD javaRdd = pairRDD.partitionBy(new CuxGroupPartitioner(groupList)).map(new Function<Tuple2<String, Row>, Row>(){
			@Override
			public Row call(Tuple2<String, Row> v1) throws Exception {
				return v1._2;
			}
		});
		Dataset<Row> result = sparkSession.createDataFrame(javaRdd, originSet.schema());
		// 打印分區分佈狀況
		taskInfo.getTask(result);
	}
}

調用結果:

能夠看到,目前的分區分佈已經按照name值進行分區,並無不一樣的name值落到同個分區了。

相關文章
相關標籤/搜索