日誌打入kafka改造歷程-咱們到底能走多遠系列49

方案

日誌收集的方案有不少,包括各類日誌過濾清洗,分析,統計,並且看起來都很高大上。本文只描述一個打入kafka的功能。
流程:app->kafka->logstash->es->kibana
業務應用直接將日誌打入kafka,而後由logstash消費,數據進入es。
另外一方面,應用在服務器上會打日誌文件。html

如圖:

詳細

初步實現

首先,咱們來初步實現這個方案,搭建elk略去不談,其中特別注意各個版本的兼容。這裏主要在代碼層面講解如何實現的歷程。
要將日誌數據寫入kafka,咱們想只要依賴官方提供的kafka client就能夠了,翻看github,有現成的:連接java

沒多少代碼,通看一遍,在此基礎上進行修改便可。
如下代碼在spring boot框架基礎。
核心appender代碼:git

public class KafkaAppender<E> extends KafkaAppenderConfig<E> {

    /**
     * Kafka clients uses this prefix for its slf4j logging.
     * This appender defers appends of any Kafka logs since it could cause harmful infinite recursion/self feeding effects.
     */
    private static final String KAFKA_LOGGER_PREFIX = "org.apache.kafka.clients";

    public static final Logger logger = LoggerFactory.getLogger(KafkaAppender.class);

    private LazyProducer lazyProducer = null;
    private final AppenderAttachableImpl<E> aai = new AppenderAttachableImpl<E>();
    private final ConcurrentLinkedQueue<E> queue = new ConcurrentLinkedQueue<E>();
    private final FailedDeliveryCallback<E> failedDeliveryCallback = new FailedDeliveryCallback<E>() {
        @Override
        public void onFailedDelivery(E evt, Throwable throwable) {
            aai.appendLoopOnAppenders(evt);
        }
    };

    public KafkaAppender() {
        // setting these as config values sidesteps an unnecessary warning (minor bug in KafkaProducer)
        addProducerConfigValue(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getName());
        addProducerConfigValue(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getName());
    }

    @Override
    public void doAppend(E e) {
        ensureDeferredAppends();
        if (e instanceof ILoggingEvent && ((ILoggingEvent)e).getLoggerName().startsWith(KAFKA_LOGGER_PREFIX)) {
            deferAppend(e);
        } else {
            super.doAppend(e);
        }
    }

    @Override
    public void start() {
        // only error free appenders should be activated
        if (!checkPrerequisites()) return;

        lazyProducer = new LazyProducer();
        super.start();
    }

    @Override
    public void stop() {
        super.stop();
        if (lazyProducer != null && lazyProducer.isInitialized()) {
            try {
                lazyProducer.get().close();
            } catch (KafkaException e) {
                this.addWarn("Failed to shut down kafka producer: " + e.getMessage(), e);
            }
            lazyProducer = null;
        }
    }

    @Override
    public void addAppender(Appender<E> newAppender) {
        aai.addAppender(newAppender);
    }

    @Override
    public Iterator<Appender<E>> iteratorForAppenders() {
        return aai.iteratorForAppenders();
    }

    @Override
    public Appender<E> getAppender(String name) {
        return aai.getAppender(name);
    }

    @Override
    public boolean isAttached(Appender<E> appender) {
        return aai.isAttached(appender);
    }

    @Override
    public void detachAndStopAllAppenders() {
        aai.detachAndStopAllAppenders();
    }

    @Override
    public boolean detachAppender(Appender<E> appender) {
        return aai.detachAppender(appender);
    }

    @Override
    public boolean detachAppender(String name) {
        return aai.detachAppender(name);
    }

    @Override
    protected void append(E e) {
        // encode 邏輯
        final byte[] payload = encoder.doEncode(e);
        final byte[] key = keyingStrategy.createKey(e);
        final ProducerRecord<byte[], byte[]> record = new ProducerRecord<byte[],byte[]>(topic, key, payload);
        Producer producer = lazyProducer.get();
        if(producer == null){
            logger.error("kafka producer is null");
            return;
        }
        // 核心發送方法
        deliveryStrategy.send(lazyProducer.get(), record, e, failedDeliveryCallback);
    }

    protected Producer<byte[], byte[]> createProducer() {
        return new KafkaProducer<byte[], byte[]>(new HashMap<String, Object>(producerConfig));
    }

    private void deferAppend(E event) {
        queue.add(event);
    }

    // drains queue events to super
    private void ensureDeferredAppends() {
        E event;

        while ((event = queue.poll()) != null) {
            super.doAppend(event);
        }
    }

    /**
     * Lazy initializer for producer, patterned after commons-lang.
     *
     * @see <a href="https://commons.apache.org/proper/commons-lang/javadocs/api-3.4/org/apache/commons/lang3/concurrent/LazyInitializer.html">LazyInitializer</a>
     */
    private class LazyProducer {

        private volatile Producer<byte[], byte[]> producer;

        private boolean initialized;
        public Producer<byte[], byte[]> get() {
            Producer<byte[], byte[]> result = this.producer;
            if (result == null) {
                synchronized(this) {
                    if(!initialized){
                        result = this.producer;
                        if(result == null) {
                            // 注意 這裏initialize可能失敗,好比傳入servers爲非法字符,返回producer爲空,因此只用initialized標記來確保不進行重複初始化,而避免不斷出錯的初始化
                            this.producer = result = this.initialize();
                            initialized = true;
                        }
                    }
                }
            }

            return result;
        }

        protected Producer<byte[], byte[]> initialize() {
            Producer<byte[], byte[]> producer = null;
            try {
                producer = createProducer();
            } catch (Exception e) {
                addError("error creating producer", e);
            }
            return producer;
        }

        public boolean isInitialized() { return producer != null; }
    }

}

以上代碼對producer生產時進行initialized標記,確保在異常場景時只生產一次。
在實際場景中好比咱們的servers配置非ip的字符,initialize方法會返回null,由於判斷是否進行initialize()方法是判斷producer是否爲空,因此進入不斷失敗的狀況,從而致使應用啓動失敗。
配置logback-spring.xml:github

<springProperty scope="context" name="LOG_KAFKA_SERVERS" source="application.log.kafka.bootstrap.servers"/>
<springProperty scope="context" name="LOG_KAFKA_TOPIC" source="application.log.kafka.topic"/>
<appender name="KafkaAppender" class="com.framework.common.log.kafka.KafkaAppender">
    <topic>${LOG_KAFKA_TOPIC}</topic>
    <producerConfig>bootstrap.servers=${LOG_KAFKA_SERVERS}</producerConfig>
</appender>

bootstrap.properties配置:spring

application.log.kafka.bootstrap.servers=10.0.11.55:9092
application.log.kafka.topic=prod-java

在打入kafka的json進行自定義,上面的encoder.doEncode(e)進行擴展:apache

public class FormatKafkaMessageEncoder<E> extends KafkaMessageEncoderBase<E> {

    protected static final int BUILDER_CAPACITY = 2048;
    protected static final int LENGTH_OPTION  = 2048;
    public static final String CAUSED_BY = "Caused by: ";
    public static final String SUPPRESSED = "Suppressed: ";
    public static final char TAB = '\t';

    public byte[] encode(ILoggingEvent event) {
        Map<String, String> formatMap = new HashMap<>();
        formatMap.put("timestamp", event.getTimeStamp()!=0?String.valueOf(new Date(event.getTimeStamp())):"");
        formatMap.put("span", event.getMDCPropertyMap()!=null?event.getMDCPropertyMap().get("X-B3-SpanId"):"");
        formatMap.put("trace", event.getMDCPropertyMap()!=null?event.getMDCPropertyMap().get("X-B3-TraceId"):"");
        formatMap.put("class", event.getLoggerName());
        formatMap.put("level", event.getLevel() != null?event.getLevel().toString():"");
        formatMap.put("message", event.getMessage());
        formatMap.put("stacktrace", event.getThrowableProxy()!=null?convertStackTrace(event.getThrowableProxy()):"");
        formatMap.put("thread", event.getThreadName());
        formatMap.put("ip", IpUtil.getLocalIP());
        formatMap.put("application", event.getLoggerContextVO()!=null&&event.getLoggerContextVO().getPropertyMap()!=null?
                event.getLoggerContextVO().getPropertyMap().get("springAppName"):"");

        String formatJson = JSONObject.toJSONString(formatMap);

        return formatJson.getBytes();
    }

    @Override
    public byte[] doEncode(E event) {
        return encode((ILoggingEvent) event);
    }


    public String convertStackTrace(IThrowableProxy tp){
        StringBuilder sb = new StringBuilder(BUILDER_CAPACITY);

        recursiveAppend(sb, tp, null);

        return sb.toString();
    }

    private void recursiveAppend(StringBuilder sb, IThrowableProxy tp, String prefix) {
        if(tp == null){
            return;
        }
        if (prefix != null) {
            sb.append(prefix);
        }
        sb.append(tp.getClassName()).append(": ").append(tp.getMessage());
        sb.append(CoreConstants.LINE_SEPARATOR);
        StackTraceElementProxy[] stepArray = tp.getStackTraceElementProxyArray();
        boolean unrestrictedPrinting = LENGTH_OPTION > stepArray.length;
        int maxIndex = (unrestrictedPrinting) ? stepArray.length : LENGTH_OPTION;

        for (int i = 0; i < maxIndex; i++) {
            sb.append(TAB);
            StackTraceElementProxy element = stepArray[i];
            sb.append(element);
            sb.append(CoreConstants.LINE_SEPARATOR);
        }

        IThrowableProxy[] suppressed = tp.getSuppressed();
        if (suppressed != null) {
            for (IThrowableProxy current : suppressed) {
                recursiveAppend(sb, current, SUPPRESSED);
            }
        }

        recursiveAppend(sb, tp.getCause(), CAUSED_BY);
    }

}

其中recursiveAppend方法是模仿ch.qos.logback.classic.spi.ThrowableProxyUtil,用來答應異常的所有堆棧。
還有這個ip的獲取問題,InetAddress.getLocalHost().getHostAddress()解決不了。
如下是詳細代碼:json

public class IpUtil {

    public static final String DEFAULT_IP = "127.0.0.1";

    public static String cacheLocalIp = null;

    private static Logger logger = LoggerFactory.getLogger(IpUtil.class);

    /**
     * 直接根據第一個網卡地址做爲其內網ipv4地址,避免返回 127.0.0.1
     *
     * @return
     */
    private static String getLocalIpByNetworkCard() {
        String ip = null;
        try {
            for (Enumeration<NetworkInterface> e = NetworkInterface.getNetworkInterfaces(); e.hasMoreElements(); ) {
                NetworkInterface item = e.nextElement();
                for (InterfaceAddress address : item.getInterfaceAddresses()) {
                    if (item.isLoopback() || !item.isUp()) {
                        continue;
                    }
                    if (address.getAddress() instanceof Inet4Address) {
                        Inet4Address inet4Address = (Inet4Address) address.getAddress();
                        ip = inet4Address.getHostAddress();
                    }
                }
            }
        } catch (Exception e) {
            logger.error("getLocalIpByNetworkCard error", e);
            try {
                ip = InetAddress.getLocalHost().getHostAddress();
            } catch (Exception e1) {
                logger.error("InetAddress.getLocalHost().getHostAddress() error", e1);
                ip = DEFAULT_IP;
            }
        }

        return ip == null ? DEFAULT_IP : ip;
    }

    public synchronized static String getLocalIP() {
        if(cacheLocalIp == null){
            cacheLocalIp = getLocalIpByNetworkCard();
            return cacheLocalIp;
        }else{
            return cacheLocalIp;
        }
    }
}

另外在logback-spring.xml中配置了本地日誌appender:bootstrap

<!-- 按照天天生成日誌文件 -->
   <appender name="filelog"  class="ch.qos.logback.core.rolling.RollingFileAppender">
       <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
           <!-- rollover daily -->
           <fileNamePattern>${LOG_FOLDER}/${springAppName}.%d{yyyy-MM-dd}.%i.log</fileNamePattern>
           <!-- each file should be at most 100MB, keep 6 days worth of history-->
           <maxFileSize>300MB</maxFileSize>
           <!--歷史文件保留個數-->
           <maxHistory>5</maxHistory>
       </rollingPolicy>
       <encoder>
           <!--格式化輸出:%d表示日期,%thread表示線程名,%-5level:級別從左顯示5個字符寬度%msg:日誌消息,%n是換行符-->
           <pattern>${CONSOLE_LOG_PATTERN}</pattern>
       </encoder>
   </appender>

注意這裏使用SizeAndTimeBasedRollingPolicy而不是使用TimeBasedRollingPolicy+SizeBasedTriggeringPolicy。
後者是按文件大小優先級最高不會自動按日期生成新的log文件。api

至此,一個打入kafka日誌的代碼就算完結了,功能徹底,執行正確。服務器

異常場景

思考下,在啓動應用或在應用運行時,kafka沒法正確接收信息,好比掛掉了。那麼這個打日誌的功能會怎麼表現呢?
固然是每次寫日誌都會嘗試去連kafka,可是失敗,必然影響應用狀態。
因此想到熔斷的思路,假設kafka掛掉,能夠經過熔斷的方式下降對應用的影響。
這裏就實現了一下熔斷器的邏輯。

狀態流轉圖:

熔斷器:

/**
*   @desc    熔斷器
 *          1,使用failureCount和consecutiveSuccessCount控制斷路器狀態的流轉,二者都使用了AtomicInteger以確保併發場數量的精準
 *          2,successCount 沒有使用AtomicInteger 不確保準確性
 *          3,failureThreshold,consecutiveSuccessThreshold,timeout參數非法賦默認值
*/
public class CircuitBreaker {

    private static final Logger logger = LoggerFactory.getLogger(CircuitBreaker.class);

    private String name;

    /**
     * 熔斷器狀態
     */
    private CircuitBreakerState state;

    /**
     * 失敗次數閥值
     */
    private int failureThreshold;

    /**
     * 熔斷狀態時間窗口
     */
    private long timeout;

    /**
     * 失敗次數
     */
    private AtomicInteger failureCount;

    /**
     * 成功次數 (併發不許確)
     */
    private int successCount;

    /**
     * 半開時間窗口裏連續成功的次數
     */
    private AtomicInteger consecutiveSuccessCount;

    /**
     * 半開時間窗口裏連續成功的次數閥值
     */
    private int consecutiveSuccessThreshold;

    public CircuitBreaker(String name, int failureThreshold, int consecutiveSuccessThreshold, long timeout) {
        if(failureThreshold <= 0){
            failureThreshold = 1;
        }
        if(consecutiveSuccessThreshold <= 0){
            consecutiveSuccessThreshold = 1;
        }
        if(timeout <= 0){
            timeout = 10000;
        }
        this.name = name;
        this.failureThreshold = failureThreshold;
        this.consecutiveSuccessThreshold = consecutiveSuccessThreshold;
        this.timeout = timeout;
        this.failureCount = new AtomicInteger(0);
        this.consecutiveSuccessCount = new AtomicInteger(0);
        state = new CloseCircuitBreakerState(this);
    }

    public void increaseFailureCount(){
        failureCount.addAndGet(1);
    }

    public void increaseSuccessCount(){
        successCount++;
    }

    public void increaseConsecutiveSuccessCount(){
        consecutiveSuccessCount.addAndGet(1);
    }

    public boolean increaseFailureCountAndThresholdReached(){
        return failureCount.addAndGet(1) >= failureThreshold;
    }
    public boolean increaseConsecutiveSuccessCountAndThresholdReached(){
        return consecutiveSuccessCount.addAndGet(1) >= consecutiveSuccessThreshold;
    }

    public boolean isNotOpen(){
        return !isOpen();
    }

    /**
     * 熔斷開啓 關閉保護方法的調用
     * @return
     */
    public boolean isOpen(){
        return state instanceof OpenCircuitBreakerState;
    }

    /**
     * 熔斷關閉 保護方法正常執行
     * @return
     */
    public boolean isClose(){
        return state instanceof CloseCircuitBreakerState;
    }

    /**
     * 熔斷半開 保護方法容許測試調用
     * @return
     */
    public boolean isHalfClose(){
        return state instanceof HalfOpenCircuitBreakerState;
    }

    public void transformToCloseState(){
        state = new CloseCircuitBreakerState(this);
    }

    public void transformToHalfOpenState(){
        state = new HalfOpenCircuitBreakerState(this);
    }

    public void transformToOpenState(){
        state = new OpenCircuitBreakerState(this);
    }

    /**
     * 重置失敗次數
     */
    public void resetFailureCount() {
        failureCount.set(0);
    }

    /**
     * 重置連續成功次數
     */
    public void resetConsecutiveSuccessCount() {
        consecutiveSuccessCount.set(0);
    }


    public long getTimeout() {
        return timeout;
    }

    /**
     * 判斷是否到達失敗閥值
     * @return
     */
    protected boolean failureThresholdReached() {
        return failureCount.get() >= failureThreshold;
    }

    /**
     * 判斷連續成功次數是否達到閥值
     * @return
     */
    protected boolean consecutiveSuccessThresholdReached(){
        return consecutiveSuccessCount.get() >= consecutiveSuccessThreshold;
    }

    /**
     * 保護方法失敗後操做
     */
    public void actFailed(){
        state.actFailed();
    }

    /**
     * 保護方法成功後操做
     */
    public void actSuccess(){
        state.actSuccess();
    }

    public static interface Executor {
        /**
         * 任務執行接口
         *
         */
        void execute();
    }

    public void execute(Executor executor){
        if(!isOpen()){
            try{
                executor.execute();
                this.actSuccess();
            }catch (Exception e){
                this.actFailed();
                logger.error("CircuitBreaker executor error", e);
            }
        }else{
            logger.error("CircuitBreaker named {} is open", this.name);
        }
    }

    public String show(){
        Map<String, Object> map = new HashMap<>();
        map.put("name:",name);
        map.put("state", isClose());
        map.put("failureThreshold:",failureThreshold);
        map.put("failureCount:",failureCount);
        map.put("consecutiveSuccessThreshold:",consecutiveSuccessThreshold);
        map.put("consecutiveSuccessCount:",consecutiveSuccessCount);
        map.put("successCount:",successCount);
        map.put("timeout:",timeout);
        map.put("state class",state.getClass());
        return JSONObject.toJSONString(map);
    }
}

狀態機:

public interface CircuitBreakerState {

    /**
     * 保護方法失敗後操做
     */
    void actFailed();

    /**
     * 保護方法成功後操做
     */
    void actSuccess();
}
public abstract class AbstractCircuitBreakerState implements CircuitBreakerState{

    protected CircuitBreaker circuitBreaker;

    public AbstractCircuitBreakerState(CircuitBreaker circuitBreaker) {
        this.circuitBreaker = circuitBreaker;
    }

    @Override
    public void actFailed() {
        circuitBreaker.increaseFailureCount();
    }

    @Override
    public void actSuccess() {
        circuitBreaker.increaseSuccessCount();
    }
}
public class CloseCircuitBreakerState extends AbstractCircuitBreakerState{

    public CloseCircuitBreakerState(CircuitBreaker circuitBreaker) {
        super(circuitBreaker);
        circuitBreaker.resetFailureCount();
        circuitBreaker.resetConsecutiveSuccessCount();
    }

    @Override
    public void actFailed() {

        // 進入開啓狀態
        if (circuitBreaker.increaseFailureCountAndThresholdReached()) {
            circuitBreaker.transformToOpenState();
        }
    }
}

public class HalfOpenCircuitBreakerState extends AbstractCircuitBreakerState{

    public HalfOpenCircuitBreakerState(CircuitBreaker circuitBreaker) {
        super(circuitBreaker);
        circuitBreaker.resetConsecutiveSuccessCount();
    }

    @Override
    public void actFailed() {
        super.actFailed();
        circuitBreaker.transformToOpenState();
    }

    @Override
    public void actSuccess() {
        super.actSuccess();
        // 達到成功次數的閥值 關閉熔斷
        if(circuitBreaker.increaseFailureCountAndThresholdReached()){
            circuitBreaker.transformToCloseState();
        }
    }
}
public class OpenCircuitBreakerState extends AbstractCircuitBreakerState{

    public OpenCircuitBreakerState(CircuitBreaker circuitBreaker) {
        super(circuitBreaker);

        final Timer timer = new Timer();
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                circuitBreaker.transformToHalfOpenState();
                timer.cancel();
            }
        }, circuitBreaker.getTimeout());
    }

}
/*   @desc    熔斷器工廠 集中應用中的CircuitBreaker
 *          注意:這裏一個熔斷器一旦生產,生命週期和應用同樣,不會被清除
*/
public class CircuitBreakerFactory {

    private static ConcurrentHashMap<String, CircuitBreaker> circuitBreakerMap = new ConcurrentHashMap();

    public CircuitBreaker getCircuitBreaker(String name){
        CircuitBreaker circuitBreaker = circuitBreakerMap.get(name);
        return circuitBreaker;
    }

    /**
     *
     * @param name 惟一名稱
     * @param failureThreshold 失敗次數閥值
     * @param consecutiveSuccessThreshold 時間窗內成功次數閥值
     * @param timeout 時間窗
     *          1,close狀態時 失敗次數>=failureThreshold,進入open狀態
     *          2,open狀態時每隔timeout時間會進入halfOpen狀態
     *          3,halfOpen狀態裏須要連續成功次數達到consecutiveSuccessThreshold,
     *                便可進入close狀態,出現失敗則繼續進入open狀態
     * @return
     */
    public static CircuitBreaker buildCircuitBreaker(String name, int failureThreshold, int consecutiveSuccessThreshold, long timeout){
        CircuitBreaker circuitBreaker = new CircuitBreaker(name, failureThreshold, consecutiveSuccessThreshold, timeout);
        circuitBreakerMap.put(name, circuitBreaker);
        return circuitBreaker;
    }

}

發送kafka消息時使用熔斷器:

/**
    * 因日誌爲非業務應用核心服務,防止kafka不穩定致使影響應用狀態,這裏使用使用熔斷機制 失敗3次開啓熔斷,每隔20秒半開熔斷,連續成功兩次關閉熔斷。
    */
   CircuitBreaker circuitBreaker = CircuitBreakerFactory.buildCircuitBreaker("KafkaAppender-c", 3, 2, 20000);

   public <K, V, E> boolean send(Producer<K, V> producer, ProducerRecord<K, V> record, final E event,
                                 final FailedDeliveryCallback<E> failedDeliveryCallback) {
       if(circuitBreaker.isNotOpen()){
           try {
               producer.send(record, (metadata, exception) -> {
                   if (exception != null) {
                       circuitBreaker.actFailed();
                       failedDeliveryCallback.onFailedDelivery(event, exception);
                       logger.error("kafka producer send log error",exception);
                   }else{
                       circuitBreaker.actSuccess();
                   }
               });
               return true;
           } catch (KafkaException e) {
               circuitBreaker.actFailed();
               failedDeliveryCallback.onFailedDelivery(event, e);
               logger.error("kafka send log error",e);
               return false;
           }
       }else{
           logger.error("kafka log circuitBreaker open");
           return false;
       }
   }

總結

1,elk搭建時需特別注意各個版本的兼容,kafka client的版本需和kafka版本保持一致 2,方案允許kafka日誌失敗,而本地日誌更加可靠,因此用熔斷器方案,以應對萬一。也可用於對其餘第三方請求時使用。

相關文章
相關標籤/搜索