轉:http://www.cnblogs.com/hodafu/p/9787032.htmlhtml
#導包
import numpy as np數組
# 從sklearn包自帶的數據集中讀出鳶尾花數據集data
from sklearn.datasets import load_iris
data = load_iris()app
# 查看data類型,包含哪些數據
print("數據類型:",type(data))
print("數據類目:",data.keys())htm
# 取出鳶尾花特徵和鳶尾花類別數據,查看其形狀及數據類型
iris_feature = data.feature_names,data.data
print("鳶尾花特徵:",iris_feature)
print("iris_feature數據類型",type(iris_feature))
iris_target = data.target
print("鳶尾花數據類別:",iris_target)
print("iris_target數據類型:",type(iris_target))blog
# 取出全部花的花萼長度(cm)的數據
sepal_len = np.array(list(len[0] for len in data.data))
print("花萼長度:",sepal_len)內存
# 取出全部花的花瓣長度(cm)+花瓣寬度(cm)的數據
pental_len = np.array(list(len[2] for len in data.data))
pental_len.resize(3,50) #從新分配花瓣長度內存
pental_wid = np.array(list(len[3] for len in data.data))
pental_wid.resize(3,50) #從新分配花瓣寬度內存
iris_lens = (pental_len,pental_wid)
print("花瓣長寬:",iris_lens)get
# 取出某朵花的四個特徵及其類別
print("特徵:",data.data[1])
print("類別:",data.target[1])import
# 將全部花的特徵和類別分紅三組,每組50個
#創建3個相應列表存放數據
iris_set = []
iris_ver = []
iris_vir = []數據類型
for i in range(0,150):
if data.target[i] == 0:
Data = data.data[i].tolist()
Data.append('setosa')
iris_set.append(Data)
elif data.target[i] ==1:
Data = data.data[i].tolist()
Data.append('versicolor')
iris_ver.append(Data)
else:
Data = data.data[i].tolist()
Data.append('virginica')
iris_vir.append(Data)numpy
# 生成新的數組,每一個元素包含四個特徵+類別datas = (iris_set,iris_ver,iris_vir)print("新的數組:",datas)