題目:
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.code
For example, given the following matrix:it
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.io
解答:
第一眼看這道題覺得是個搜索問題,因此用dfs解了一下發現邊界並無辦法很好地限定成一個square,因此就放棄了這個解法。class
可行的解法是很巧妙的:以這個square的最右下角的位置做爲存儲點f(i, j),當matrix(i, j)是1的時候,f(i, j) = min{f(i - 1, j - 1), f(i - 1, j), f(i, j -1)}. 這是由於若是這是一個square,那麼構成這個square的最基本條件就是跟它相鄰的邊的最小所在square.因此一個square的f值以下:
1 1 1 1 : 1 1 1 1
1 1 1 1 : 1 2 2 2
1 1 1 1 : 1 2 3 3
1 1 1 1 : 1 2 3 4 搜索
1 1 0 1 : 1 1 0 1
1 1 1 1 : 1 2 1 1
1 1 1 0 : 1 2 2 0
1 1 1 0 : 1 2 3 0程序
因此程序以下:im
public class Solution { //State: f[i][j] is max length of matrix until (i, j); //Function: f[i][j] = min(f[i - 1][j - 1], f[i][j - 1], f[i - 1][j]) + 1 if matrix[i - 1][j - 1] == '1'; //Initialize: f[0][0] = 0; //Result: f[matrix.length][matrix[0].length]; public int maximalSquare(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return 0; } int m = matrix.length, n = matrix[0].length; int[][] f = new int[m + 1][n + 1]; int max = 0; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (matrix[i - 1][j - 1] == '1') { f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i][j - 1], f[i - 1][j])) + 1; max = Math.max(max, f[i][j]); } } } return max * max; } }