爬蟲之性能相關

在編寫爬蟲時,性能的消耗主要在IO請求中,當單進程單線程模式下請求URL時必然會引發等待,從而使得請求總體變慢。python

一、同步執行

import requests

def fetch_async(url):
    response = requests.get(url)
    return response

url_list = ['http://www.github.com', 'http://www.bing.com']

for url in url_list:
    fetch_async(url)

二、多線程執行

  • 線程池不能太多,由於線程的上下文切換,浪費時間,會下降總體效率;react

  • 每一個線程發出請求以後就阻塞,等待返回數據,這中間的時間線程處於空閒狀態;git

from concurrent.futures import ThreadPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response

url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async, url)
pool.shutdown(wait=True)

三、多線程+回調函數執行

  • 優勢:請求成功返回以後調用回調函數,下降耦合
from concurrent.futures import ThreadPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response

def callback(future):
    print(future.result())

url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async, url)
    v.add_done_callback(callback)
pool.shutdown(wait=True)

四、多進程執行

  • 每一個進程發出請求以後就阻塞,等待返回數據,這中間的時間進程處於空閒狀態;
from concurrent.futures import ProcessPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response

url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async, url)
pool.shutdown(wait=True)

五、多進程+回調函數執行

from concurrent.futures import ProcessPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response

def callback(future):
    print(future.result())

url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async, url)
    v.add_done_callback(callback)
pool.shutdown(wait=True)

多線程和多進程的區別:github

  • IO密集型操做,使用多線程,由於不調用CPUweb

  • 計算密集型操做,使用多進程,調用CPU數據庫

  • 線程之間共用資源,能夠節省資源空間服務器

  • 進程之間不共享資源,比較佔用資源空間cookie

  • 由於GIL鎖的緣由,若是用多線程進行計算型操做,每次一個進程同一時間只能有一個線程被CPU調用,效率不高;

經過上述代碼都可以完成對請求性能的提升,對於多線程和多進程的缺點是在IO阻塞時會形成了線程和進程的浪費,因此異步IO會是首選:網絡

  • asyncio能夠實現單線程併發IO操做。若是僅用在客戶端,發揮的威力不大。若是把asyncio用在服務器端,例如Web服務器,因爲HTTP鏈接就是IO操做,所以能夠用單線程+coroutine實現多用戶的高併發支持。多線程

  • asyncio實現了TCP、UDP、SSL等協議,aiohttp則是基於asyncio實現的HTTP框架。

六、async io(異步IO)示例一

  • asyncio 不支持HTTP請求,只支持TCP
import asyncio

@asyncio.coroutine
def func1():
    print('before...func1......')
    yield from asyncio.sleep(5)
    print('end...func1......')

tasks = [func1(), func1()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

七、async io(異步IO)示例二

  • 把發送的數據封裝成HTTP請求的方式
import asyncio


@asyncio.coroutine
def fetch_async(host, url='/'):
    print(host, url)
    reader, writer = yield from asyncio.open_connection(host, 80)

    request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
    request_header_content = bytes(request_header_content, encoding='utf-8')

    writer.write(request_header_content)
    yield from writer.drain()
    text = yield from reader.read()
    print(host, url, text)
    writer.close()

tasks = [
    fetch_async('www.cnblogs.com', '/wupeiqi/'),
    fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

八、asyncio + aiohttp

  • aiohttp幫咱們封裝了HTTP數據包
  • 兩個模塊組合實現異步IO
import aiohttp
import asyncio

@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request('GET', url)
    # data = yield from response.read()
    # print(url, data)
    print(url, response)
    response.close()

tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

九、asyncio + requests

  • requests幫咱們封裝了HTTP數據包
import asyncio
import requests

@asyncio.coroutine
def fetch_async(func, *args):
    loop = asyncio.get_event_loop()
    future = loop.run_in_executor(None, func, *args)
    response = yield from future
    print(response.url, response.content)

tasks = [
    fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
    fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

十、gevent + requests

  • Python內部socket在發送完數據後等待接收數據,是阻塞的,monkey.patch_all()以後,就會把內部全部的socket換成gevent封裝的異步IO操做;

  • gevent是第三方庫,經過greenlet實現協程,greenlet能夠實現協程,不過每一次都要人爲的去指向下一個該執行的協程,顯得太過麻煩。

  • 當一個greenlet遇到IO操做時,好比訪問網絡,就自動切換到其餘的greenlet,等到IO操做完成,再在適當的時候切換回來繼續執行。因爲IO操做很是耗時,常常使程序處於等待狀態,有了gevent爲咱們自動切換協程,就保證總有greenlet在運行,而不是等待IO。

  • 協程存在的意義:對於多線程應用,CPU經過切片的方式來切換線程間的執行,線程切換時須要耗時(保存狀態,下次繼續)。協程,則只使用一個線程,在一個線程中規定某個代碼塊執行順序。
import gevent

import requests
from gevent import monkey

monkey.patch_all()


def fetch_async(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)
    print(response.url, response.content)

# ##### 發送請求 #####
gevent.joinall([
    gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])

# ##### 發送請求(協程池控制最大協程數量) #####
# from gevent.pool import Pool
# pool = Pool(5)最多同時5個協程
# gevent.joinall([
#     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])

十一、grequests

  • gevent + requests組合成一個模塊
import grequests


request_list = [
    grequests.get('http://httpbin.org/delay/1', timeout=0.001),
    grequests.get('http://fakedomain/'),
    grequests.get('http://httpbin.org/status/500')
]


# ##### 執行並獲取響應列表 #####
# response_list = grequests.map(request_list)
# print(response_list)


# ##### 執行並獲取響應列表(處理異常) #####
# def exception_handler(request, exception):
# print(request,exception)
#     print("Request failed")

# response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)

十二、Twisted示例

from twisted.web.client import getPage, defer
from twisted.internet import reactor

def one_done(arg):
  print('finished...')

def all_done(arg): reactor.stop() def callback(contents): print(contents) deferred_list = [] # 列表裏是一些特殊對象,封裝了已經向URL發送請求的對象 url_list = ['http://www.bing.com', 'http://www.baidu.com', ] for url in url_list: deferred = getPage(bytes(url, encoding='utf8'))#發送HTTP請求 deferred.addCallback(callback)#執行回調函數 deferred_list.append(deferred) dlist = defer.DeferredList(deferred_list) dlist.addBoth(all_done)#給每一個對象添加回調函數 reactor.run()#檢測是否有執行完成的請求,每完成一個執行一次one_done,等全部的請求都回來,執行all_done(),這是個死循環,須要all_done來中止它

1三、Tornado

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop

COUNT = 0
def handle_response(response):
    """
    處理返回值內容(須要維護計數器,來中止IO循環),調用 ioloop.IOLoop.current().stop()
    """
    global COUNT
    COUNT -= 1
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)
    if COUNT == 0:
        ioloop.IOLoop.current().stop()

def func():
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
    ]
    global COUNT
    COUNT = len(url_list)
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)

ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start() # 也是個死循環,須要自定義一箇中止條件,一個簡單的計數器

1四、Twisted更多

from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse


def one_done(arg):
    print(arg)
    reactor.stop()

post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
                   method=bytes('POST', encoding='utf8'),
                   postdata=post_data,
                   cookies={},
                   headers=headers)
response.addBoth(one_done)

reactor.run()

總結:以上選擇使用的優先級爲:

grequests(gevent+requests) --> Twisted --> Tornado --> asyncio

以上均是Python內置以及第三方模塊提供異步IO請求模塊,使用簡便大大提升效率,而對於異步IO請求的本質則是【非阻塞Socket】+【IO多路複用】

1五、自定義異步IO模塊

  • IO多路複用:監聽多個socket對象(while循環),誰有變化就處理誰,利用這個特性,能夠開發出不少操做,好比異步IO模塊;

  • 異步IO:當進程執行到一個IO(等待外部數據)的時候,不等待,直到數據接收成功,再回來處理,其實就是回調;

  • 利用非阻塞的socket+IO多路複用,能夠實現僞併發;

 

  •  精簡版
import select
import socket
import time


class HttpRequest(object):
    """封裝請求和相應的基本數據"""
    def __init__(self, sock, host, callback):
        self.sock = sock
        self.callback = callback
        self.host = host

    def fileno(self):
        """請求sockect對象的文件描述符,用於select監聽"""
        return self.sock.fileno()

class HttpResponse:
    def __init__(self,recv_data):
        self.recv_data = recv_data
        self.header_dict = {}
        self.body = None
        self.initialize()

    def initialize(self):
        # 把響應頭和響應體分開
        headers, body = self.recv_data.split(b'\r\n\r\n', 1)
        self.body = body
        header_list = headers.split(b'\r\n')
        for head in header_list:
            head = str(head,encoding='utf-8')
            v = head.split(':',1)
            if len(v) == 2:
                self.header_dict[v[0]] = v[1]
            elif len(v) == 1:
                self.header_dict['method'] = v[0]


class AsyncRequest(object):
    def __init__(self):
        self.conn = []  # 檢測是否有數據返回
        self.connections = []#檢測是否已經連接成功

    def add_request(self, host, callback,):
        """建立一個要請求"""
        try:
            sk = socket.socket()
            sk.setblocking(False)
            sk.connect((host, 80))
        except BlockingIOError as e:
            pass
        # print('已經向遠程發送鏈接的請求')
        req = HttpRequest(sk, host, callback)
        self.connections.append(req)
        self.conn.append(req)

    def run(self):
        """事件循環,用於檢測請求的socket是否已經就緒,從而執行相關操做"""
        while True:
            rlist, wlist, elist = select.select(self.conn, self.connections, self.conn, 0.05)

            for w in wlist:
                # 已經鏈接成功遠程服務器,開始向遠程發送請求數據
                print(w.host,'鏈接成功。。。')
                data = "GET / HTTP/1.0\r\nHost:%s\r\n\r\n"%(w.host,)
                w.sock.sendall(bytes(data,encoding='utf-8'))
                # 鏈接成功,發送請求以後,移除監聽對象
                self.connections.remove(w)

            for r in rlist:
                sock = r.sock
                recv_data = bytes()
                while True: # 服務端返回的數據可能不少,須要循環接收
                    try:
                        data = sock.recv(8096)
                        recv_data += data
                        r.write(recv_data)
                    except Exception as e:
                        break
                # print(recv_data)
                response = HttpResponse(recv_data)
                r.callback(r.host,response)
                sock.close() # 接收完成,關閉連接
                self.conn.remove(r) # 移除監聽對象

            # 若是接收數據的對象列表爲空,說明全部接收數據完成,結束循環
            if len(self.conn) == 0:
                break


if __name__ == '__main__':
    def callback_1(host,response):
        print(host,'保存到文件',response.header_dict,response.body)

    def callback_2(host,response):
        print(host,'保存到數據庫',response.header_dict,response.body)

    obj = AsyncRequest()
    url_list = [
        {'host': 'www.cnblogs.com','callback': callback_1},
        {'host': 'www.baidu.com','callback': callback_2},
        {'host': 'www.zhihu.com', 'callback': callback_2},
    ]
    for item in url_list:
        obj.add_request(**item)

    obj.run()
  • 加強版
import select
import socket
import time


class AsyncTimeoutException(TimeoutError):
    """
    請求超時異常類
    """

    def __init__(self, msg):
        self.msg = msg
        super(AsyncTimeoutException, self).__init__(msg)


class HttpContext(object):
    """封裝請求和相應的基本數據"""

    def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
        """
        sock: 請求的客戶端socket對象
        host: 請求的主機名
        port: 請求的端口
        port: 請求的端口
        method: 請求方式
        url: 請求的URL
        data: 請求時請求體中的數據
        callback: 請求完成後的回調函數
        timeout: 請求的超時時間
        """
        self.sock = sock
        self.callback = callback
        self.host = host
        self.port = port
        self.method = method
        self.url = url
        self.data = data

        self.timeout = timeout

        self.__start_time = time.time()
        self.__buffer = []

    def is_timeout(self):
        """當前請求是否已經超時"""
        current_time = time.time()
        if (self.__start_time + self.timeout) < current_time:
            return True

    def fileno(self):
        """請求sockect對象的文件描述符,用於select監聽"""
        return self.sock.fileno()

    def write(self, data):
        """在buffer中寫入響應內容"""
        self.__buffer.append(data)

    def finish(self, exc=None):
        """在buffer中寫入響應內容完成,執行請求的回調函數"""
        if not exc:
            response = b''.join(self.__buffer)
            self.callback(self, response, exc)
        else:
            self.callback(self, None, exc)

    def send_request_data(self):
        content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
            self.method.upper(), self.url, self.host, self.data,)

        return content.encode(encoding='utf8')


class AsyncRequest(object):
    def __init__(self):
        self.fds = []
        self.connections = []

    def add_request(self, host, port, method, url, data, callback, timeout):
        """建立一個要請求"""
        client = socket.socket()
        client.setblocking(False)
        try:
            client.connect((host, port))
        except BlockingIOError as e:
            pass
            # print('已經向遠程發送鏈接的請求')
        req = HttpContext(client, host, port, method, url, data, callback, timeout)
        self.connections.append(req)
        self.fds.append(req)

    def check_conn_timeout(self):
        """檢查全部的請求,是否有已經鏈接超時,若是有則終止"""
        timeout_list = []
        for context in self.connections:
            if context.is_timeout():
                timeout_list.append(context)
        for context in timeout_list:
            context.finish(AsyncTimeoutException('請求超時'))
            self.fds.remove(context)
            self.connections.remove(context)

    def running(self):
        """事件循環,用於檢測請求的socket是否已經就緒,從而執行相關操做"""
        while True:
            r, w, e = select.select(self.fds, self.connections, self.fds, 0.05)

            if not self.fds:
                return

            for context in r:
                sock = context.sock
                while True:
                    try:
                        data = sock.recv(8096)
                        if not data:
                            self.fds.remove(context)
                            context.finish()
                            break
                        else:
                            context.write(data)
                    except BlockingIOError as e:
                        break
                    except TimeoutError as e:
                        self.fds.remove(context)
                        self.connections.remove(context)
                        context.finish(e)
                        break

            for context in w:
                # 已經鏈接成功遠程服務器,開始向遠程發送請求數據
                if context in self.fds:
                    data = context.send_request_data()
                    context.sock.sendall(data)
                    self.connections.remove(context)

            self.check_conn_timeout()


if __name__ == '__main__':
    def callback_func(context, response, ex):
        """
        :param context: HttpContext對象,內部封裝了請求相關信息
        :param response: 請求響應內容
        :param ex: 是否出現異常(若是有異常則值爲異常對象;不然值爲None)
        :return:
        """
        print(context, response, ex)

    obj = AsyncRequest()
    url_list = [
        {'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
    ]
    for item in url_list:
        print(item)
        obj.add_request(**item)

    obj.running()
相關文章
相關標籤/搜索