做者|open-mmlab
編譯|Flin
來源|Githubhtml
咱們使用AWS做爲託管model zoo的主要站點,並在阿里雲上維護鏡像。
你能夠在模型網址中把https://s3.ap-northeast-2.ama...://open-mmlab.oss-cn-beijing.aliyuncs.com。git
coco_2017_train
上訓練以及在coco_2017_val
測試。torch.cuda.max_memory_allocated()
爲全部8個GPU 的最大值。請注意,此值一般小於nvidia-smi
顯示的值。具備不一樣主幹的更多模型將添加到model zoo。github
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | AR1000 | Download |
---|---|---|---|---|---|---|---|
R-50-C4 | caffe | 1x | - | - | 20.5 | 51.1 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | 2x | 2.2 | 0.17 | 20.3 | 52.2 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 1x | - | - | 20.1 | 50.2 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 2x | - | - | 20.0 | 51.1 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | 1x | 3.3 | 0.253 | 16.9 | 58.2 | - |
R-50-FPN | pytorch | 1x | 3.5 | 0.276 | 17.7 | 57.1 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 2x | - | - | - | 57.6 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | 1x | 5.2 | 0.379 | 13.9 | 59.4 | - |
R-101-FPN | pytorch | 1x | 5.4 | 0.396 | 14.4 | 58.6 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 2x | - | - | - | 59.1 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 6.6 | 0.589 | 11.8 | 59.4 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 2x | - | - | - | 59.9 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 9.5 | 0.955 | 8.3 | 59.8 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 2x | - | - | - | 60.0 | model(https://s3.ap-northeast-2.ama... |
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | Download |
---|---|---|---|---|---|---|---|
R-50-C4 | caffe | 1x | - | - | 9.5 | 34.9 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | 2x | 4.0 | 0.39 | 9.3 | 36.5 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 1x | - | - | 9.3 | 33.9 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 2x | - | - | 9.4 | 35.9 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | 1x | 3.6 | 0.333 | 13.5 | 36.6 | - |
R-50-FPN | pytorch | 1x | 3.8 | 0.353 | 13.6 | 36.4 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 2x | - | - | - | 37.7 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | 1x | 5.5 | 0.465 | 11.5 | 38.8 | - |
R-101-FPN | pytorch | 1x | 5.7 | 0.474 | 11.9 | 38.5 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 2x | - | - | - | 39.4 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 6.9 | 0.672 | 10.3 | 40.1 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 2x | - | - | - | 40.4 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 9.8 | 1.040 | 7.3 | 41.3 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 2x | - | - | - | 40.7 | model(https://s3.ap-northeast-2.ama... |
HRNetV2p-W18 | pytorch | 1x | - | - | - | 36.1 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W18 | pytorch | 2x | - | - | - | 38.3 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 1x | - | - | - | 39.5 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 2x | - | - | - | 40.6 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 1x | - | - | - | 40.9 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 2x | - | - | - | 41.5 | model(https://open-mmlab.s3.ap-nort... |
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|---|
R-50-C4 | caffe | 1x | - | - | 8.1 | 35.9 | 31.5 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | 2x | 4.2 | 0.43 | 8.1 | 37.9 | 32.9 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 1x | - | - | 7.9 | 35.1 | 31.2 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | 2x | - | - | 8.0 | 37.2 | 32.5 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | 1x | 3.8 | 0.430 | 10.2 | 37.4 | 34.3 | - |
R-50-FPN | pytorch | 1x | 3.9 | 0.453 | 10.6 | 37.3 | 34.2 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 2x | - | - | - | 38.5 | 35.1 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | 1x | 5.7 | 0.534 | 9.4 | 39.9 | 36.1 | - |
R-101-FPN | pytorch | 1x | 5.8 | 0.571 | 9.5 | 39.4 | 35.9 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 2x | - | - | - | 40.3 | 36.5 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 7.1 | 0.759 | 8.3 | 41.1 | 37.1 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 2x | - | - | - | 41.4 | 37.1 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 10.0 | 1.102 | 6.5 | 42.1 | 38.0 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 2x | - | - | - | 42.0 | 37.7 | model(https://s3.ap-northeast-2.ama... |
HRNetV2p-W18 | pytorch | 1x | - | - | - | 37.3 | 34.2 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W18 | pytorch | 2x | - | - | - | 39.2 | 35.7 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 1x | - | - | - | 40.7 | 36.8 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 2x | - | - | - | 41.7 | 37.5 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 1x | - | - | - | 42.4 | 38.1 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 2x | - | - | - | 42.9 | 38.3 | model(https://open-mmlab.s3.ap-nort... |
Backbone | Style | 類型 | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|---|---|
R-50-C4 | caffe | Faster | 1x | - | - | 6.7 | 35.0 | - | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | Faster | 2x | 3.8 | 0.34 | 6.6 | 36.4 | - | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | Faster | 1x | - | - | 6.3 | 34.2 | - | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | Faster | 2x | - | - | 6.1 | 35.8 | - | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | Faster | 1x | 3.3 | 0.242 | 18.4 | 36.6 | - | - |
R-50-FPN | pytorch | Faster | 1x | 3.5 | 0.250 | 16.5 | 35.8 | - | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | Mask | 1x | - | - | 8.1 | 35.9 | 31.5 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | caffe | Mask | 2x | 4.2 | 0.43 | 8.1 | 37.9 | 32.9 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | Mask | 1x | - | - | 7.9 | 35.1 | 31.2 | model(https://s3.ap-northeast-2.ama... |
R-50-C4 | pytorch | Mask | 2x | - | - | 8.0 | 37.2 | 32.5 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | Faster | 2x | - | - | - | 37.1 | - | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | Faster | 1x | 5.2 | 0.355 | 14.4 | 38.6 | - | - |
R-101-FPN | pytorch | Faster | 1x | 5.4 | 0.388 | 13.2 | 38.1 | - | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | Faster | 2x | - | - | - | 38.8 | - | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | Mask | 1x | 3.4 | 0.328 | 12.8 | 37.3 | 34.5 | - |
R-50-FPN | pytorch | Mask | 1x | 3.5 | 0.346 | 12.7 | 36.8 | 34.1 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | Mask | 2x | - | - | - | 37.9 | 34.8 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | Mask | 1x | 5.2 | 0.429 | 11.2 | 39.4 | 36.1 | - |
R-101-FPN | pytorch | Mask | 1x | 5.4 | 0.462 | 10.9 | 38.9 | 35.8 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | Mask | 2x | - | - | - | 39.9 | 36.4 | model(https://s3.ap-northeast-2.ama... |
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | Download |
---|---|---|---|---|---|---|---|
R-50-FPN | caffe | 1x | 3.4 | 0.285 | 12.5 | 35.8 | - |
R-50-FPN | pytorch | 1x | 3.6 | 0.308 | 12.1 | 35.6 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 2x | - | - | - | 36.4 | model(https://open-mmlab.s3.ap-nort... |
R-101-FPN | caffe | 1x | 5.3 | 0.410 | 10.4 | 37.8 | - |
R-101-FPN | pytorch | 1x | 5.5 | 0.429 | 10.9 | 37.7 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 2x | - | - | - | 38.1 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 6.7 | 0.632 | 9.3 | 39.0 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 2x | - | - | - | 39.3 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 9.6 | 0.993 | 7.0 | 40.0 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 2x | - | - | - | 39.6 | model(https://s3.ap-northeast-2.ama... |
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | Download |
---|---|---|---|---|---|---|---|
R-50-C4 | caffe | 1x | 8.7 | 0.92 | 5.0 | 38.7 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | 1x | 3.9 | 0.464 | 10.9 | 40.5 | - |
R-50-FPN | pytorch | 1x | 4.1 | 0.455 | 11.9 | 40.4 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 20e | - | - | - | 41.1 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | 1x | 5.8 | 0.569 | 9.6 | 42.4 | - |
R-101-FPN | pytorch | 1x | 6.0 | 0.584 | 10.3 | 42.0 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 20e | - | - | - | 42.5 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 7.2 | 0.770 | 8.9 | 43.6 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 20e | - | - | - | 44.0 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 10.0 | 1.133 | 6.7 | 44.5 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 20e | - | - | - | 44.7 | model(https://s3.ap-northeast-2.ama... |
HRNetV2p-W18 | pytorch | 20e | - | - | - | 41.2 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 20e | - | - | - | 43.7 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 20e | - | - | - | 44.6 | model(https://open-mmlab.s3.ap-nort... |
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|---|
R-50-C4 | caffe | 1x | 9.1 | 0.99 | 4.5 | 39.3 | 32.8 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | caffe | 1x | 5.1 | 0.692 | 7.6 | 40.9 | 35.5 | - |
R-50-FPN | pytorch | 1x | 5.3 | 0.683 | 7.4 | 41.2 | 35.7 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 20e | - | - | - | 42.3 | 36.6 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | caffe | 1x | 7.0 | 0.803 | 7.2 | 43.1 | 37.2 | - |
R-101-FPN | pytorch | 1x | 7.2 | 0.807 | 6.8 | 42.6 | 37.0 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 20e | - | - | - | 43.3 | 37.6 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 1x | 8.4 | 0.976 | 6.6 | 44.4 | 38.2 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 20e | - | - | - | 44.7 | 38.6 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 1x | 11.4 | 1.33 | 5.3 | 45.4 | 39.1 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 20e | - | - | - | 45.7 | 39.4 | model(https://s3.ap-northeast-2.ama... |
HRNetV2p-W18 | pytorch | 20e | - | - | - | 41.9 | 36.4 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 20e | - | - | - | 44.5 | 38.5 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 20e | - | - | - | 46.0 | 39.5 | model(https://open-mmlab.s3.ap-nort... |
注意s:服務器
Backbone | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | mask AP | Download |
---|---|---|---|---|---|---|---|---|
R-50-FPN | pytorch | 1x | 7.4 | 0.936 | 4.1 | 42.1 | 37.3 | model(https://s3.ap-northeast-2.ama... |
R-50-FPN | pytorch | 20e | - | - | - | 43.2 | 38.1 | model(https://s3.ap-northeast-2.ama... |
R-101-FPN | pytorch | 20e | 9.3 | 1.051 | 4.0 | 44.9 | 39.4 | model(https://s3.ap-northeast-2.ama... |
X-101-32x4d-FPN | pytorch | 20e | 5.8 | 0.769 | 3.8 | 46.1 | 40.3 | model(https://s3.ap-northeast-2.ama... |
X-101-64x4d-FPN | pytorch | 20e | 7.5 | 1.120 | 3.5 | 46.9 | 40.8 | model(https://s3.ap-northeast-2.ama... |
HRNetV2p-W18 | pytorch | 20e | - | - | - | 43.1 | 37.9 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W32 | pytorch | 20e | - | - | - | 45.3 | 39.6 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 20e | - | - | - | 46.8 | 40.7 | model(https://open-mmlab.s3.ap-nort... |
HRNetV2p-W48 | pytorch | 28e | - | - | - | 47.0 | 41.0 | model(https://open-mmlab.s3.ap-nort... |
注意:網絡
Backbone | Size | Style | Lr schd | 內存 (GB) | 訓練時間 (s/iter) | 最短期 (fps) | box AP | Download |
---|---|---|---|---|---|---|---|---|
VGG16 | 300 | caffe | 120e | 3.5 | 0.256 | 25.9 / 34.6 | 25.7 | model(https://s3.ap-northeast-2.ama... |
VGG16 | 512 | caffe | 120e | 7.6 | 0.412 | 20.7 / 25.4 | 29.3 | model(https://s3.ap-northeast-2.ama... |
注意:機器學習
cudnn.benchmark
設置爲True
用於SSD訓練和測試。有關詳細信息,請參考組規範化(https://github.com/open-mmlab...。分佈式
有關詳細信息,請參考權重標準化(https://github.com/open-mmlab...。ide
有關詳細信息,請參閱可變形卷積網絡(https://github.com/open-mmlab...。性能
有關詳細信息,請參考CARAFE(https://github.com/open-mmlab...。學習
有關詳細信息,請參考Instaboost(https://github.com/open-mmlab...。
有關詳細信息,請參考Libra R-CNN(https://github.com/open-mmlab...。
有關詳細信息,請參閱Guided Anchoring(https://github.com/open-mmlab...。
有關詳細信息,請參閱FCOS(https://github.com/open-mmlab...。
有關詳細信息,請參考FoveaBox(https://github.com/open-mmlab...。
有關詳細信息,請參考RepPoints(https://github.com/open-mmlab...。
有關詳細信息,請參考FreeAnchor(https://github.com/open-mmlab...。
有關詳細信息,請參考Grid R-CNN(https://github.com/open-mmlab...。
有關詳細信息,請參閱GHM(https://github.com/open-mmlab...。
有關詳細信息,請參考GCNet(https://github.com/open-mmlab...。
有關詳細信息,請參考HRNet(https://github.com/open-mmlab...。
有關詳細信息,請參考Mask Scoring R-CNN(https://github.com/open-mmlab...。
有關詳細信息,請參考 從新思考ImageNet預訓練(https://github.com/open-mmlab...。
有關詳細信息,請參閱NAS-FPN(https://github.com/open-mmlab...。
有關詳細信息,請參考ATSS(https://github.com/open-mmlab...。
咱們還對PASCAL VOC(https://github.com/open-mmlab...://github.com/open-mmlab/ mmdetection / blob / master / configs / cityscapes)和WIDER FACE(https://github.com/open-mmlab...。
咱們將mmdetection與Detectron(https://github.com/facebookre... 和maskrcnn-benchmark(https://github.com/facebookre...。使用的主幹是R-50-FPN。
一般來講,mmdetection與Detectron相比具備3個優點。
Detectron和maskrcnn-benchmark使用Caffe風格的ResNet做爲主幹。咱們使用caffe樣式(權重從(https://github.com/facebookre... 和pytorch樣式(權重來自官方model zoo)ResNet主幹報告結果,表示爲pytorch樣式結果 / caffe樣式結果。
咱們發現,pytorch風格的ResNet一般比caffe風格的ResNet收斂慢,所以在1倍進度中致使結果略低,但2倍進度的最終結果則較高。
類型 | Lr schd | Detectron | maskrcnn-benchmark | mmdetection |
---|---|---|---|---|
RPN | 1x | 57.2 | - | 57.1 / 58.2 |
2x | - | - | 57.6 / - | |
Faster R-CNN | 1x | 36.7 | 36.8 | 36.4 / 36.6 |
2x | 37.9 | - | 37.7 / - | |
Mask R-CNN | 1x | 37.7 & 33.9 | 37.8 & 34.2 | 37.3 & 34.2 / 37.4 & 34.3 |
2x | 38.6 & 34.5 | - | 38.5 & 35.1 / - | |
Fast R-CNN | 1x | 36.4 | - | 35.8 / 36.6 |
2x | 36.8 | - | 37.1 / - | |
Fast R-CNN (w/mask) | 1x | 37.3 & 33.7 | - | 36.8 & 34.1 / 37.3 & 34.5 |
2x | 37.7 & 34.0 | - | 37.9 & 34.8 / - |
訓練速度以s/iter爲單位。越低越好。
類型 | Detectron (P1001) | maskrcnn-benchmark (V100) | mmdetection (V1002) |
---|---|---|---|
RPN | 0.416 | - | 0.253 |
Faster R-CNN | 0.544 | 0.353 | 0.333 |
Mask R-CNN | 0.889 | 0.454 | 0.430 |
Fast R-CNN | 0.285 | - | 0.242 |
Fast R-CNN (w/mask) | 0.377 | - | 0.328 |
推理速度在單個GPU上以fps(img / s)進行測量。越高越好。
類型 | Detectron (P100) | maskrcnn-benchmark (V100) | mmdetection (V100) |
---|---|---|---|
RPN | 12.5 | - | 16.9 |
Faster R-CNN | 10.3 | 7.9 | 13.5 |
Mask R-CNN | 8.5 | 7.7 | 10.2 |
Fast R-CNN | 12.5 | - | 18.4 |
Fast R-CNN (w/mask) | 9.9 | - | 12.8 |
類型 | Detectron | maskrcnn-benchmark | mmdetection |
---|---|---|---|
RPN | 6.4 | - | 3.3 |
Faster R-CNN | 7.2 | 4.4 | 3.6 |
Mask R-CNN | 8.6 | 5.2 | 3.8 |
Fast R-CNN | 6.0 | - | 3.3 |
Fast R-CNN (w/mask) | 7.9 | - | 3.4 |
毫無疑問,maskrcnn基準測試和mmdetection比Detectron的存儲效率更高,而主要優勢是PyTorch自己。咱們還執行一些內存優化來推進它向前發展。
請注意,Caffe2和PyTorch具備不一樣的API,以經過不一樣的實現獲取內存使用狀況。對於全部代碼庫,nvidia-smi
顯示的內存使用量均大於上表中報告的數字。
原文連接:https://mmdetection.readthedo...
歡迎關注磐創AI博客站:
http://panchuang.net/
sklearn機器學習中文官方文檔:
http://sklearn123.com/
歡迎關注磐創博客資源彙總站:
http://docs.panchuang.net/