1、分區表概述express
分區表也是內部表,建立表時能夠同時爲表建立一個或多個分區,這樣咱們在加載數據時爲其指定具體的分區,查詢數據時能夠指定具體的分區從而提升效率,分區能夠理解爲表的一個特殊的列。關鍵字是partitioned。apache
分區表其實是將表文件分紅多個有標記的小文件方便查詢。oracle
2、建立分區表ide
這裏咱們將oracle用戶scott下的emp表導出的emp.csv文件在Hive中建立分區表存放,按照部門編號進行分區,emp表的字段信息值以下:oop
empno, ename, job, mgr, hiredate, salary, comm, deptnospa
7499, ALLEN, SALESMAN, 7698, 1981/2/20, 1600, 300, 30orm
hive> create table part_emp(hadoop
> empno int,ci
> ename string,input
> job string,
> mgr int,
> hiredate string,
> salary float,
> comm float
> )
> partitioned by (deptno int)
> row format delimited fields terminated by ',';
OK
Time taken: 0.061 seconds
查看分區表,其中# Partition Information爲分區信息,有兩個分區year和city
hive> desc extended part_emp;
OK
empno int None
ename string None
job string None
mgr int None
hiredate string None
salary float None
comm float None
deptno int None
# Partition Information
# col_name data_type comment
deptno int None
3、分區表插入數據
一、經過load命令加載數據
第一次分區信息爲deptno=10
hive> load data local inpath '/root/emp.csv_10' into table part_emp partition(deptno=10);
Copying data from file:/root/emp.csv_10
Copying file: file:/root/emp.csv_10
Loading data to table default.part_emp partition (deptno=10)
[Warning] could not update stats.
OK
Time taken: 2.267 seconds
第二次分區信息爲deptno=20
hive> load data local inpath '/root/emp.csv_20' into table part_emp partition(deptno=20);
Copying data from file:/root/emp.csv_20
Copying file: file:/root/emp.csv_20
Loading data to table default.part_emp partition (deptno=20)
[Warning] could not update stats.
OK
Time taken: 8.151 seconds
第三次分區信息爲deptno=30,第三次經過insert的方式加載分區信息
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
hive> load data local inpath '/root/emp.csv_30' into table part_emp partition(deptno=30);
Copying data from file:/root/emp.csv_30
Copying file: file:/root/emp.csv_30
Loading data to table default.part_emp partition (deptno=30)
[Warning] could not update stats.
OK
Time taken: 7.344 seconds
4、根據分區查詢,分區很像是一個特殊的列
hive> select * from part_emp where deptno=10;
7782 CLARK MANAGER 7839 1981/6/9 2450.0 100.0 10
7839 KING PRESIDENT NULL 1981/11/17 5000.0 120.0 10
7934 MILLER CLERK 7782 1982/1/23 1300.0 133.0 10
8129 Abama MANAGER 7839 1981/6/9 2450.0 122.0 10
8131 Jimy PRESIDENT NULL 1981/11/17 5000.0 333.0 10
8136 Goodle CLERK 7782 1982/1/23 1300.0 421.0 10
查看分區表的分區信息
hive> show partitions part_emp;
deptno=10
deptno=20
deptno=30
5、分區表在HDFS上的存儲形式
一個分區對應一個目錄
6、觀察分區表查詢和普通表查詢的執行計劃
普通表
hive> explain select * from emp where deptno=10;
ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME emp))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR TOK_ALLCOLREF)) (TOK_WHERE (= (TOK_TABLE_OR_COL deptno) 10))))
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
emp
TableScan
alias: emp
Filter Operator
predicate:
expr: (deptno = 10)
type: boolean
Select Operator
expressions:
expr: empno
type: int
expr: ename
type: string
expr: job
type: string
expr: mgr
type: int
expr: hiredate
type: string
expr: salary
type: float
expr: comm
type: float
expr: deptno
type: int
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Stage: Stage-0
Fetch Operator
limit: -1
分區表:
hive> explain select * from part_emp where deptno=10;
ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME part_emp))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR TOK_ALLCOLREF)) (TOK_WHERE (= (TOK_TABLE_OR_COL deptno) 10))))
STAGE DEPENDENCIES:
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
TableScan
alias: part_emp
Select Operator
expressions:
expr: empno
type: int
expr: ename
type: string
expr: job
type: string
expr: mgr
type: int
expr: hiredate
type: string
expr: salary
type: float
expr: comm
type: float
expr: deptno
type: string
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
ListSink