「「「 假設一天中每隔兩個小時(range(2,26,2))的氣溫(℃)分別是[15,13,14.5,17,20,25,26,26,27,22,18,15] 用matplotlib用圖形畫出變化的折線圖 """ from matplotlib import pyplot as plt """設置中文""" plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標籤 """設置圖片大小""" plt.figure(figsize=(16, 6), dpi=80) """準備數據""" x = range(2, 26, 2) # x軸,數據是一個可迭代對象 y = [15, 13, 14.5, 17, 20, 25, 26, 26, 27, 22, 18, 15] # y軸數據也是一個可迭代對象 """繪圖""" plt.plot(x, y, linestyle='--', linewidth=5, color='red') """設置x軸的刻度""" _xtick_labels = [i / 2 for i in range(4, 49)] plt.xticks(_xtick_labels[::2]) # 當列表太密集能夠設置列表步長調整間距 plt.yticks(range(min(y), max(y) + 1)) """圖形保存""" # plt.savefig('t1.png') """圖形標題""" plt.title('matplotlib基礎') """圖形顯示""" plt.show()
我這裏單拿出一個一個的對象,而後後面在進行總結。在matplotlib中,整個圖表爲一個figure對象。其實對於每個彈出的小窗口就是一個Figure對象,那麼如何在一個代碼中建立多個Figure對象,也就是多個小窗口呢?html
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1, 1, 50) y1 = x ** 2 y2 = x * 2 # 這個是第一個figure對象,下面的內容都會在第一個figure中顯示 plt.figure() plt.plot(x, y1) # 這裏第二個figure對象 plt.figure(num=3, figsize=(10, 5)) plt.plot(x, y2) plt.show()
這裏須要注意的是:python
plt.plot(x,y2,color = 'red',linewidth = 3.0,linestyle = '--')
# -*- coding:utf-8 -*- import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標籤 data = pd.read_csv("data/four platform.csv") fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() ax0.plot(data["day"], data["Med-counter"], label="生物醫學", color='gray', linestyle=':') ax0.plot(data["day"], data["Nonmed-counter"], label="非生物醫學", color='gray', linestyle='-') ax0.legend(prop={'size': 7}, loc="upper left") # ax0.set_xlabel('day') ax0.set_ylabel('平均Counter值') ax1.plot(data["day"], data["Med-mendeley"], label="生物醫學", color='gray', linestyle=':') ax1.plot(data["day"], data["Nonmed-mendeley"], label="非生物醫學", color='gray', linestyle='-') ax1.legend(prop={'size': 7}, loc="upper left") # ax1.set_xlabel('day',fontsize=6) ax1.set_ylabel('平均Mendeley值') ax2.plot(data["day"], data["Med-pmc"], label="生物醫學", color='gray', linestyle=':') ax2.plot(data["day"], data["Nonmed-pmc"], label="非生物醫學", color='gray', linestyle='-') ax2.legend(prop={'size': 7}, loc="upper left") ax2.set_xlabel('論文發表天數') ax2.set_ylabel('平均PMC值') ax3.plot(data["day"], data["Med-twitter"], label="生物醫學", color='gray', linestyle=':') ax3.plot(data["day"], data["Nonmed-twitter"], label="非生物醫學", color='gray', linestyle='-') ax3.legend(prop={'size': 7}, loc="upper left") ax3.set_xlabel('論文發表天數') ax3.set_ylabel('平均Twitter值') ax3.set_ylim(0, 8) plt.show()
咱們不少時候會再一個figures中去添加多條線,那咱們如何去區分多條線呢?這裏就用到了legend。linux
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1, 1, 50) y1 = x ** 2 y2 = x * 2 plt.figure() # 添加圖例 l1, = plt.plot(x, y1, label='linear line') l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line') plt.legend(handles=[l1, l2], labels=['up', 'down'], loc='best') plt.show()
這裏須要注意的是:windows
legend = plt.legend(handles=[l1, l2], labels=['hu', 'tang'], loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('r') # 或者0.9...
在圖片上加註解有兩種方式:dom
# -*- coding: utf-8 -*- """ @Datetime: 2019/4/10 @Author: Zhang Yafei """ import matplotlib.pyplot as plt import numpy as np x = np.linspace(-3, 3, 50) y = 2 * x + 1 plt.figure(num=1, figsize=(8, 5)) plt.plot(x, y) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # 將底下的做爲x軸 ax.xaxis.set_ticks_position('bottom') # 而且data,以y軸的數據爲基本 ax.spines['bottom'].set_position(('data', 0)) # 將左邊的做爲y軸 ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) print("-----方式一-----") x0 = 1 y0 = 2 * x0 + 1 plt.plot([x0, x0], [0, y0], 'k--', linewidth=2.5) plt.scatter([x0], [y0], s=50, color='b') plt.annotate(r'$2x+1 = %s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30), textcoords='offset points', fontsize=16 , arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2")) plt.show()
第一種標註方式ide
plt.annotate(r'$2x+1 = %s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30), textcoords='offset points', fontsize=16 , arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2"))
注意:函數
第二種標註方式字體
print("-----方式二-----") plt.text(-3.7, 3, r'$this\ is\ the\ some\ text. \mu\ \sigma_i\ \alpha_t$', fontdict={'size': 16, 'color': 'r'})
看一下這個圖this
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-3,3,50) y1 = 0.1*x y2 = x**2 plt.figure() #zorder控制繪圖順序 plt.plot(x,y1,linewidth = 10,zorder = 1,label = r'$y_1\ =\ 0.1*x$') plt.plot(x,y2,linewidth = 10,zorder = 2,label = r'$y_2\ =\ x^{2}$') plt.ylim(-2,2) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0)) plt.show()
執行效果spa
從上面看,咱們能夠看見咱們軸上的座標被掩蓋住了,那麼咱們怎麼去修改他呢?
print(ax.get_xticklabels()) print(ax.get_yticklabels()) for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(12) label.set_bbox(dict(facecolor = 'white',edgecolor='none',alpha = 0.8,zorder = 2)) <a list of 9 Text xticklabel objects> <a list of 9 Text yticklabel objects>
讓座標軸顯示出來
這裏須要注意:
import random """ 若是列表a表示10點到12點的每一分鐘的氣溫,如何繪製折線圖觀察每分鐘氣溫的變化狀況? a= [random.randint(20,35) for i in range(120)] 用matplotlib用圖形畫出變化的折線圖 """ from matplotlib import pyplot as plt import matplotlib from matplotlib import font_manager #方式一 #windows和linux設置字體 # font = {'family' : 'SimHei'} # matplotlib.rc('font', **font) #方式二 my_font = font_manager.FontProperties(fname='font/simsun.ttc') x = range(120) y = [random.randint(20,35) for i in range(120)] plt.figure(figsize=(13,8),dpi=80) plt.plot(x,y) #設置x的軸的刻度 _x = list(x) #只有列表才能夠取步長,range不能夠取步長 _xtick_labels = ['10點{}分'.format(i) for i in range(60)] _xtick_labels += ['11點{}分'.format(i) for i in range(60)] #取步長,數字和字符串一一對應,數據的長度同樣 plt.xticks(_x[::3],_xtick_labels[::3], rotation=45,fontproperties=my_font) #rotation旋轉的度數 #添加描述信息 plt.xlabel('時間',fontproperties=my_font) plt.ylabel('溫度 單位(℃)',fontproperties=my_font) plt.title('10點到12點每分鐘的氣溫變化狀況',fontproperties=my_font) plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 假設你們在30歲的時候,根據本身的實際狀況,統計出來了從11歲到30歲每一年交的女(男)朋友的數量如列表a,請繪製出該數據的折線圖,以便分析本身每一年交女(男)朋友的數量走勢 a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1] 要求: y軸表示個數 x軸表示歲數,好比11歲,12歲等 """ from matplotlib import pyplot as plt from matplotlib import font_manager #解決中文字體正常顯示 my_font = font_manager.FontProperties(fname='font/simsun.ttc') #準備數據 x = range(11,31) y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1] #設置圖形大小 plt.figure(figsize=(11,6),dpi=80) #設置x,y軸的刻度 _x = list(x) _xtick_labels = ['{}歲'.format(i) for i in _x] plt.xticks(_x,_xtick_labels,rotation=45,fontproperties=my_font) plt.yticks(range(0,9)) #繪製網格 plt.grid(alpha=0.4) #alpha透明度 #設置描述信息 plt.xlabel('年齡',fontproperties=my_font) plt.ylabel('個數',fontproperties=my_font) plt.title('11-30歲交女友數量走勢圖',fontproperties=my_font) plt.plot(x,y) plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 假設你們在30歲的時候,根據本身的實際狀況,統計出來了你和你同桌各自從11歲到30歲每一年交的女(男)朋友的數量如列表a和b,請在一個圖中繪製出該數據的折線圖,以便比較本身和同桌20年間的差別,同時分析每一年交女(男)朋友的數量走勢 a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1] b = [1,0,3,1,2,2,3,3,2,1 ,2,1,1,1,1,1,1,1,1,1] 要求: y軸表示個數 x軸表示歲數,好比11歲,12歲等 """ from matplotlib import pyplot as plt from matplotlib import font_manager #解決中文字體正常顯示 my_font = font_manager.FontProperties(fname='font/simsun.ttc') #準備數據 x = range(11,31) y_1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1] y_2 = [1,0,3,1,2,2,3,3,2,1 ,2,1,1,1,1,1,1,1,1,1] #設置圖形大小 plt.figure(figsize=(11,6),dpi=80) #設置x,y軸的刻度 _x = list(x) _xtick_labels = ['{}歲'.format(i) for i in _x] plt.xticks(_x,_xtick_labels,rotation=45,fontproperties=my_font) # plt.yticks(range(0,9)) #繪製網格 plt.grid(alpha=0.4) #alpha透明度 #設置描述信息 plt.xlabel('年齡',fontproperties=my_font) plt.ylabel('個數',fontproperties=my_font) plt.title('11-30歲交女友數量走勢圖',fontproperties=my_font) plt.plot(x,y_1,label='本身',color='orange',linestyle=':') plt.plot(x,y_2,label='同桌',color='cyan',linestyle='--') plt.legend(prop=my_font,loc='upper left') plt.show()
import matplotlib.pyplot as plt import numpy as np from numpy.random import randn from pandas import DataFrame df = DataFrame(randn(10, 5), columns=['A', 'B', 'C', 'D', 'E'], index=np.arange(0, 100, 10)) df.plot() plt.show()
import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標籤 f = open(r"期刊總體趨勢.csv") data = pd.read_csv(f) y = range(0, 11000, 1000) x = range(0, 180) plt.plot(data["day"], data["pcbi"], color='gray', linestyle=':') plt.plot(data["day"], data["pgen"], color='gray', linestyle='-') plt.plot(data["day"], data["pmed"], color='gray', linestyle='--') plt.plot(data["day"], data["pntd"], color='gray', linestyle='-.') plt.plot(data["day"], data["pone"], color='gray', linewidth=5, linestyle='--') plt.plot(data["day"], data["ppat"], color='gray', linewidth=5, linestyle=':') plt.plot(data["day"], data["pbio"], color='gray', linewidth=5, linestyle='-') # plt.plot(data["day"], data["pone"], color='gray', linewidth=5, linestyle='--', marker='2') # plt.plot(data["day"], data["ppat"], color='gray', linewidth=5, linestyle=':', marker='3') # plt.plot(data["day"], data["pbio"], color='gray', linewidth=5, linestyle='-', marker='*') plt.ylim(0, 11000) plt.legend() plt.yticks(y) plt.xlabel("天", fontsize="10") plt.ylabel("期刊平均訪問量", fontsize="11") plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 假設經過爬蟲你獲取到了北京2016年3,10月份天天白天的最高氣溫(分別位於列表a,b),那麼此時如何尋找出氣溫和隨時間(天)變化的某種規律? a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6] """ from matplotlib import pyplot as plt from matplotlib import font_manager #設置中文字體 my_font = font_manager.FontProperties(fname='font/simsun.ttc') #設置圖形大小 plt.figure(figsize=(13,6),dpi=80) #數據準備 x_3 = range(1,32) x_10 = range(51,82) y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6] #使用scatter繪製散點圖和折線圖的惟一區別 plt.scatter(x_3,y_3,label='3月份') plt.scatter(x_10,y_10,label='10月份') plt.legend(loc='upper left',prop=my_font) #調整x的刻度 _x = list(x_3) + list(x_10) _xtick_labels = ['3月{}日'.format(i) for i in x_3] _xtick_labels += ['10月{}日'.format(i-50) for i in x_10] plt.xticks(_x[::3],_xtick_labels[::3],fontproperties=my_font,rotation=45) #添加描述信息 plt.xlabel('時間',fontproperties=my_font) plt.ylabel('溫度',fontproperties=my_font) plt.title('3月份和10月份溫度對比圖',fontproperties=my_font) #顯示 plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 假設你獲取到了2017年內地電影票房前20的電影(列表a)和電影票房數據(列表b),那麼如何更加直觀的展現該數據? a = ["戰狼2","速度與激情8","功夫瑜伽","西遊伏妖篇","變形金剛5:最後的騎士","摔跤吧!爸爸","加勒比海盜5:死無對證","金剛:骷髏島","極限特工:終極迴歸","生化危機6:終章","乘風破浪","神偷奶爸3","智取威虎山","大鬧天竺","金剛狼3:殊死一戰","蜘蛛俠:英雄歸來","悟空傳","銀河護衛隊2","情聖","新木乃伊",] b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] 單位:億 """ from matplotlib import pyplot as plt from matplotlib import font_manager my_font = font_manager.FontProperties(fname='font/simsun.ttc') plt.figure(figsize=(15,8),dpi=80) a = ["戰狼2","速度與激情8","功夫瑜伽","西遊伏妖篇","變形金剛5:最後的騎士","摔跤吧!爸爸","加勒比海盜5:死無對證","金剛:骷髏島","極限特工:終極迴歸","生化危機6:終章","乘風破浪","神偷奶爸3","智取威虎山","大鬧天竺","金剛狼3:殊死一戰","蜘蛛俠:英雄歸來","悟空傳","銀河護衛隊2","情聖","新木乃伊",] b = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] plt.bar(range(len(a)),b,width=0.3) plt.xticks(range(len(a)),a,fontproperties=my_font,rotation=90) plt.savefig('movie.png') plt.show()
""" 假設你獲取到了2017年內地電影票房前20的電影(列表a)和電影票房數據(列表b),那麼如何更加直觀的展現該數據? a = ["戰狼2","速度與激情8","功夫瑜伽","西遊伏妖篇","變形金剛5:最後的騎士","摔跤吧!爸爸","加勒比海盜5:死無對證","金剛:骷髏島","極限特工:終極迴歸","生化危機6:終章","乘風破浪","神偷奶爸3","智取威虎山","大鬧天竺","金剛狼3:殊死一戰","蜘蛛俠:英雄歸來","悟空傳","銀河護衛隊2","情聖","新木乃伊",] b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] 單位:億 """ from matplotlib import pyplot as plt from matplotlib import font_manager my_font = font_manager.FontProperties(fname='font/simsun.ttc') plt.figure(figsize=(15,8),dpi=80) a = ["戰狼2","速度與激情8","功夫瑜伽","西遊伏妖篇","變形金剛5:最後的騎士","摔跤吧!爸爸","加勒比海盜5:死無對證","金剛:骷髏島","極限特工:終極迴歸","生化危機6:終章","乘風破浪","神偷奶爸3","智取威虎山","大鬧天竺","金剛狼3:殊死一戰","蜘蛛俠:英雄歸來","悟空傳","銀河護衛隊2","情聖","新木乃伊",] b = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] plt.barh(range(len(a)),b,height=0.3,color='orange') plt.yticks(range(len(a)),a,fontproperties=my_font) plt.grid(alpha=0.4) # plt.savefig('movie.png') plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 假設你知道了列表a中電影分別在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)三天的票房,爲了展現列表中電影自己的票房以及同其餘電影的數據對比狀況,應該如何更加直觀的呈現該數據? a = ["猩球崛起3:終極之戰","敦刻爾克","蜘蛛俠:英雄歸來","戰狼2"] b_16 = [15746,312,4497,319] b_15 = [12357,156,2045,168] b_14 = [2358,399,2358,362] """ from matplotlib import pyplot as plt from matplotlib import font_manager my_font = font_manager.FontProperties(fname='font/simsun.ttc') plt.figure(figsize=(15,8),dpi=80) a = ["猩球崛起3:終極之戰","敦刻爾克","蜘蛛俠:英雄歸來","戰狼2"] b_16 = [15746,312,4497,319] b_15 = [12357,156,2045,168] b_14 = [2358,399,2358,362] bar_width = 0.2 x_14 = list(range(len(a))) x_15 = [i+bar_width for i in x_14] x_16 = [i+bar_width*2 for i in x_14] plt.bar(range(len(a)),b_14,width=bar_width,label='14日') plt.bar(x_15,b_15,width=bar_width,label='15日') plt.bar(x_16,b_16,width=bar_width,label='16日') plt.legend(prop=my_font) plt.xticks(x_14,a,fontproperties=my_font) plt.grid(alpha=0.4) # plt.savefig('movie.png') plt.show()
import matplotlib.pyplot as plt import numpy as np from numpy.random import randn from pandas import DataFrame df = DataFrame(abs(randn(10, 5)), columns=['A', 'B', 'C', 'D', 'E'], index=np.arange(0, 100, 10)) df.plot(kind='bar') plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 直方圖:分佈狀態 假設你獲取了250部電影的時長(列表a中),但願統計出這些電影時長的分佈狀態(好比時長爲100分鐘到120分鐘電影的數量,出現的頻率)等信息,你應該如何呈現這些數據? a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150] """ from matplotlib import pyplot as plt from matplotlib import font_manager a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150] #計算組數 d = 3 num_bins = (max(a)-min(a))//d #設置圖形大小 plt.figure(figsize=(15,8),dpi=80) plt.hist(a,num_bins) #頻數分佈直方圖 # plt.hist(a,num_bins,density=True) #頻率分佈直方圖 #設置x軸的刻度 plt.xticks(range(min(a),max(a)+d,d)) plt.grid(alpha=0.3) plt.show()
# -*- coding: utf-8 -*- """ @Datetime: 2018/11/17 @Author: Zhang Yafei """ """ 在美國2004年人口普查發現有124 million的人在離家相對較遠的地方工做。根據他們從家到上班地點所須要的時間,經過抽樣統計(最後一列)出了下表的數據,這些數據可以繪製成直方圖麼? interval = [0,5,10,15,20,25,30,35,40,45,60,90] width = [5,5,5,5,5,5,5,5,5,15,30,60] quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47] """ from matplotlib import pyplot as plt from matplotlib import font_manager interval = [0,5,10,15,20,25,30,35,40,45,60,90] width = [5,5,5,5,5,5,5,5,5,15,30,60] quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47] plt.figure(figsize=(13,6),dpi=80) plt.bar(range(len(quantity)),quantity,width=1) #設置x軸的刻度 _x = [i-0.5 for i in range(13)] _xtick_labels = interval + [150] plt.xticks(_x,_xtick_labels) plt.show()
餅圖(Pie Graph):又稱圓形圖,是一個劃分爲幾個扇形的扇形統計圖,它可以直觀的反映個體與整體的比例關係
import matplotlib.pyplot as plt # font = { # 'family':'SimHei' # } # mpl.rc('font',**font) # 設置繪圖的主題風格(不妨使用R中的ggplot分隔) plt.style.use('ggplot') # 構造數據 edu = [0.2515, 0.3724, 0.3336, 0.0368, 0.0057] labels = ['中專', '大專', '本科', '碩士', '其餘'] explode = [0, 0.1, 0, 0, 0] # 用於突出顯示大專學歷人羣 colors = ['#9999ff', '#ff9999', '#7777aa', '#2442aa', '#dd5555'] # 自定義顏色 # 中文亂碼和座標軸負號的處理 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 將橫、縱座標軸標準化處理,保證餅圖是一個正圓,不然爲橢圓 plt.axes(aspect='equal') # 控制x軸和y軸的範圍 plt.xlim(0, 4) plt.ylim(0, 4) # 繪製餅圖 plt.pie(x=edu, # 繪圖數據 explode=explode, # 突出顯示大專人羣 labels=labels, # 添加教育水平標籤 colors=colors, # 設置餅圖的自定義填充色 autopct='%.1f%%', # 設置百分比的格式,這裏保留一位小數 pctdistance=0.8, # 設置百分比標籤與圓心的距離 labeldistance=1.15, # 設置教育水平標籤與圓心的距離 startangle=180, # 設置餅圖的初始角度 radius=1.5, # 設置餅圖的半徑 counterclock=False, # 是否逆時針,這裏設置爲順時針方向 wedgeprops={'linewidth': 1.5, 'edgecolor': 'green'}, # 設置餅圖內外邊界的屬性值 textprops={'fontsize': 12, 'color': 'k'}, # 設置文本標籤的屬性值 center=(1.8, 1.8), # 設置餅圖的原點 frame=1) # 是否顯示餅圖的圖框,這裏設置顯示 # 刪除x軸和y軸的刻度 plt.xticks(()) plt.yticks(()) # 添加圖標題 plt.title('芝麻信用失信用戶教育水平分佈') # 保存圖形 plt.savefig('芝麻信用失信用戶教育水平分佈.png') # 顯示圖形 plt.show()
import matplotlib as mpl import matplotlib.pyplot as plt import numpy from pandas import read_csv data = read_csv('E:/python/data_analysis/data/pie.csv') gb = data.groupby( by=['通訊品牌'], as_index=False )['號碼'].agg({ '用戶數': numpy.size }) font = { 'family': 'SimHei' } mpl.rc('font', **font) explode = [0.1, 0, 0] # 0.1 凸出這部分, plt.pie(gb['用戶數'], labels=gb['通訊品牌'], explode=explode, autopct='%.f%%', shadow=True, labeldistance=1.1, startangle=90, pctdistance=0.6) plt.title('手機品牌市場佔有率') plt.savefig('手機品牌市場佔有率.png') plt.show() # labeldistance,文本的位置離遠點有多遠,1.1指1.1倍半徑的位置 # autopct,圓裏面的文本格式,%3.1f%%表示小數有三位,整數有一位的浮點數 # shadow,餅是否有陰影 # startangle,起始角度,0,表示從0開始逆時針轉,爲第一塊。通常選擇從90度開始比較好看 # pctdistance,百分比的text離圓心的距離 # patches, l_texts, p_texts,爲了獲得餅圖的返回值,p_texts餅圖內部文本的,l_texts餅圖外label的文本
import matplotlib.pyplot as plt def draw_pie(labels, quants): # make a square figure plt.figure(1, figsize=(6, 6)) # For China, make the piece explode a bit expl = [0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0] # 第二塊即China離開圓心0.1 # Colors used. Recycle if not enough. colors = ["blue", "red", "coral", "green", "yellow", "orange"] # 設置顏色(循環顯示) # Pie Plot # autopct: format of "percent" string;百分數格式 plt.pie(quants, explode=expl, colors=colors, labels=labels, autopct='%1.1f%%', pctdistance=0.8, shadow=True) plt.title('Top 10 GDP Countries', bbox={'facecolor': '0.8', 'pad': 5}) plt.savefig("pie.jpg") plt.show() plt.close() # quants: GDP # labels: country name labels = ['USA', 'China', 'India', 'Japan', 'Germany', 'Russia', 'Brazil', 'UK', 'France', 'Italy'] quants = [15094025.0, 11299967.0, 4457784.0, 4440376.0, 3099080.0, 2383402.0, 2293954.0, 2260803.0, 2217900.0, 1846950.0] draw_pie(labels, quants)
import numpy as np import pandas as pd import matplotlib.pyplot as plt # 簡單的餅圖 series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series') # series.plot.pie(figsize=(6, 6)) # # ##多子圖餅圖 # df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y']) # df.plot.pie(subplots=True, figsize=(8, 4)) # 有比例詳情的餅圖 series.plot.pie(labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'], autopct='%.2f', fontsize=10, figsize=(6, 6)) plt.show()
import matplotlib.pyplot as plt import numpy as np # 創建等高線的函數 def f(x, y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2) n = 256 x = np.linspace(-3, 3, n) y = np.linspace(-3, 3, n) # 等高線圖就是網格圖,生成網格 X, Y = np.meshgrid(x, y) # 向等高線圖形上面的一些線條增長顏色 C = plt.contour(X, Y, f(X, Y), 5, color='black', linewidth=0.5) # 向等高線圖形不一樣位置增長顏色 plt.contourf(X, Y, f(X, Y), 5, alpha=0.75, cmap=plt.cm.hot) # 增長字體 plt.clabel(C, inline=True, fontsize=10) # 若是修改上面的代碼True 改爲False 那麼線會直接穿過字體 # plt.clabel(C,inline=False,fontsize=10) # 去掉x,y軸 plt.xticks(()) plt.yticks(()) plt.show()
# 設置一個圖片的數據 a = np.random.random(9).reshape(3, 3) print(a) # origin='lower' 換成 origin='upper' # interpolation='nearest' 顯示的是類別,什麼方式進行顯示 # http://matplotlib.org/examples/images_contours_and_fields/interpolation_methods.html plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower') # 在旁邊增長一個說明 shrink=0.9 顯示的比例是多少 也就是壓縮 # plt.colorbar() plt.colorbar(shrink=1.2) # 去掉x,y軸 plt.xticks(()) plt.yticks(()) plt.show()
# 由於是3D圖像咱們須要額外的導入一個庫 from mpl_toolkits.mplot3d import Axes3D # 創建窗口 fig = plt.figure() # 在3D上面加上軸 ax = Axes3D(fig) # x,y數據 X = np.arange(-4, 4, 0.25) Y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) # 造成高度值 Z = np.sin(R) # rstride=1 cstride=1 跨度(行列跨) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow')) # 等高線圖offset=-2 表示比0點的位置低兩個點 ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap='rainbow') ax.set_zlim(-2, 2) plt.show()