android源碼分析-深刻MessageQueue

承接上文在looper中會在一開始就建立一個MessageQueue,而且在loop中每次都會從其中取出一個message處理。那麼咱們就來看看這個MessageQueue:java

MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

nativeInit,無可避免的又要進入c層進行分析。對應的文件是/frameworks/base/core/jni/android_os_MessageQueue.cpp:linux

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
    if (!nativeMessageQueue) {
        jniThrowRuntimeException(env, "Unable to allocate native queue");
        return 0;
    }

    nativeMessageQueue->incStrong(env);
    return reinterpret_cast<jlong>(nativeMessageQueue);
}

這裏建立了一個新的NativeMessageQueue並返回他的指針。這個類的定義也在此文件中,看看他的構造作了什麼:android

NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();
    if (mLooper == NULL) {
        mLooper = new Looper(false);
        Looper::setForThread(mLooper);
    }
}

新建了一個Looper對象,這個確定不是java層的那個了,可是先後都有getForThread和setForThread。那麼他們分別在幹什麼呢?個人理解是在作tls線程本地變量的處理,確保本線程只有一個looper。具體的內容在這裏再也不論述,後續有機會能夠剖析下。網絡

咱們下面來看看這個Looper是什麼吧,他的構造函數以下:app

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
    LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd: %s",
                        strerror(errno));

    AutoMutex _l(mLock);
    rebuildEpollLocked();
}

除了狀態的值得設置外,就是rebuildEpollLocked:async

void Looper::rebuildEpollLocked() {
    // Close old epoll instance if we have one.
    if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
        ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
        close(mEpollFd);
    }

    // Allocate the new epoll instance and register the wake pipe.
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
                        strerror(errno));

    for (size_t i = 0; i < mRequests.size(); i++) {
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
        if (epollResult < 0) {
            ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
                  request.fd, strerror(errno));
        }
    }
}

咱們看到了什麼?epoll。這不是linux中的epoll嗎?就是這個玩意,爲了控制多個fd(文件描述符)的讀寫等事件而誕生的,通常多用於網絡開發,相似win上的完成端口。而後新建了一個eventItem用於監聽mWakeEventFd,就是將喚醒的eventfd放到epoll的監聽隊列中,用於喚醒機制。而後呢,進行了一個循環,取出全部的request,而且都放到了epoll監聽,首次調用這個for循環不會被執行,由於mRequests的size是0。這些request都是什麼呢?看定義:ide

struct Request {
        int fd;
        int ident;
        int events;
        int seq;
        sp<LooperCallback> callback;
        void* data;

        void initEventItem(struct epoll_event* eventItem) const;
    };

那麼他們對應的具體內容又是什麼呢?先放一放,往下看。函數

回到java層的loop函數中,每次調用next方法獲取message,那麼看看這個MessageQueue的next方法:oop

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

首先看到獲取了mPtr,這個ptr就是c層的nativeMessageQueue的地址。而後進入了一個死循環,率先走了一個nativePollOnce(ptr, nextPollTimeoutMillis);內部調用了android_os_MessageQueue_nativePollOnce:ui

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}

這裏實際上還原了地址爲NativeMessageQueue對象,並調用了pollOnce方法:

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;

    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}

保留了pollObj對象,而且調用了Looper的pollOnce。至關於c層Looper的初始化。那麼來看看pollOnce:

int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
                ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
                        "fd=%d, events=0x%x, data=%p",
                        this, ident, fd, events, data);
#endif
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {
#if DEBUG_POLL_AND_WAKE
            ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }

        result = pollInner(timeoutMillis);
    }
}

一個死循環,裏面先是一個while,優先處理應答response(一個request對應一個response),並返回。若是沒有response須要處理的時候,走pollInner。這個pollInner是個關鍵,代碼比較多,咱們節選看:

......
    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    ......
    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
    ......

epoll_wait在mEpollFd上阻塞等待,直到有事件發生。若是等到了就執行下面的for循環,枚舉每個epoll_event,若是等待到的消息是喚醒消息(fd==mWakeEventFd),則執行awoken喚醒,不然判斷epollEvents是否含有相關事件,若是有填寫生成好的events,這個應該是轉換一下事件爲了上層使用。而後進行了pushResponse的動做,這裏終於有個response生成的過程了,繼續看下去:

void Looper::pushResponse(int events, const Request& request) {
    Response response;
    response.events = events;
    response.request = request;
    mResponses.push(response);
}

看到了吧,就是個填充response的過程,並將其push到mResponses中。再回到pollInner中往下看:

......
Done: ;

    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
                        this, handler.get(), message.what);
#endif
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }
    ......

一上來就是一個while循環,處理一下以前堆積的事件。注意,這裏是c層(native層)本身的消息,與java層的不要緊。這裏有個時間的對比,若是每一個messageEnvelope的uptime<=now,也便是小於等於當前時間,那麼這個uptime是個什麼呢?個人理解是一個喚醒時間,也就是message的執行時間,由於message是容許被後置一段時間執行的。若是須要被執行的時間比當前時間晚,就調用這個message的handler的handleMessage。看起來很合理,就是爲了清除一下以前堆積還未執行的事件的handle的回調。
以後又是一個for循環:

......
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    ......

這裏就是處理response了,就是走一個response.request.callback->handleEvent。
咱們如今繼續找線索下,在Looper的構造中出現了mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);,這個eventfd就是用來支持進程或者線程間通信的通道,相似管道。

好吧,這個過程基本上分析完畢了,其實就是經過epoll不斷的處理消息,而且調用消息的回調。可是其實整個過程還有不少不是很明確的地方,例如:1.這個epoll綁定的fd究竟是個什麼東西?是管道嗎?網上的文章基本上都是說管道,這裏我沒有找到線索,很差肯定。2.這個c層的looper中的sendmessage已經很明確是根據傳遞進來的參數來設定messageEnvelope的handler。可是調用他的是哪一個東西呢?怎麼和java層結合起來呢?有很多問題。

相關文章
相關標籤/搜索