概述
Service的註冊過程
打開binder驅動
得到service_manager代理類
addService
binder序列化實現
對binder驅動的讀寫
Service與binder驅動的通訊
開啓線程
循環監聽
讀取binder驅動
解析binder命令
解析服務請求命令
Client端經過binder調用Service服務
參考資料
概述
在Android中,最主要的IPC方式就是經過Binder。Binder通訊是一個標準的C/S架構。爲了方便理解咱們能夠把Binder通訊和網絡Http通訊做一個類比。android
Binder驅動能夠類比成網絡驅動
BpBinder至關於客戶端的網絡庫,它持有一個mHandler,mHandler是一個int類型的變量,這個至關於ip地址,驅動經過這個mHandler知道客戶端要發送的服務器。
BBinder至關於服務端網絡框架庫,服務端啓動服務的時候將自動註冊到Binder驅動裏面
IMediaPlayerService就是先後端定義的接口協議,定義好純虛函數的方法
BpMediaPlayerService 就是客戶端的業務代理實現。客戶端將每個方法調用轉換成對應的cmd字符串寫道binder驅動裏面。
BnMediaPlayerService是後端的具體業務實現。從驅動讀出消息後,經過cmd字段來決定調用具體的業務實現。
service_manager至關於一個dns服務器 。全部實名的Binder都須要經過addSerivce()方法註冊到service_manager裏面。而後其餘進程須要這個服務的時候能夠直接經過名字獲取到這個Service的引用和handler值。service_manager在啓動的時候將本身設定爲 一個爲0的Service註冊到Binder驅動裏面,因此其餘進程能夠直接經過一個handler=0的引用調用service_manager裏面的函數。
下面咱們經過media服務看一下一個Service是如何註冊到binder驅動中的。後端
Service的註冊過程
Main_mediaserver.cpp緩存
int main(int argc __unused, char** argv)
{服務器
sp<ProcessState> proc(ProcessState::self());//1
sp<IServiceManager> sm = defaultServiceManager();//2
ALOGI("ServiceManager: %p", sm.get());
AudioFlinger::instantiate();
MediaPlayerService::instantiate();//3
CameraService::instantiate();
#ifdef AUDIO_LISTEN_ENABLED
ALOGI("ListenService instantiated");
ListenService::instantiate();
#endif
AudioPolicyService::instantiate();
SoundTriggerHwService::instantiate();
registerExtensions();
ProcessState::self()->startThreadPool();//4
IPCThreadState::self()->joinThreadPool()//5
}
在1中咱們經過ProcessState.self()函數得到了一個ProcessState對象的指針保存到了proc中。cookie
打開binder驅動
sp<ProcessState> ProcessState::self()
{
Mutex::Autolock _l(gProcessMutex);
if (gProcess != NULL) {
return gProcess;
}
gProcess = new ProcessState;
return gProcess;
}
self()函數定義了一個ProcessState對象,保存在了gProcess中,gProcess是一個全局變量。也就是說一個進程共用同一個ProcessState對象。咱們看如下ProcessState對象的構造函數,來了解一下這個類的功能網絡
ProcessState::ProcessState()
: mDriverFD(open_driver())
, mVMStart(MAP_FAILED)
, mManagesContexts(false)
, mBinderContextCheckFunc(NULL)
, mBinderContextUserData(NULL)
, mThreadPoolStarted(false)
, mThreadPoolSeq(1)
{
if (mDriverFD >= 0) {
// XXX Ideally, there should be a specific define for whether we
// have mmap (or whether we could possibly have the kernel module
// availabla).架構
mDriverFD = -1;
}框架
LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened. Terminating.");
}
在構造函數中咱們經過open_driver()函數初始化了一個mDriverFD變量。ide
static int open_driver()
{
int fd = open("/dev/binder", O_RDWR); //打開binder驅動
if (fd >= 0) {
fcntl(fd, F_SETFD, FD_CLOEXEC);
int vers = 0;
status_t result = ioctl(fd, BINDER_VERSION, &vers);
if (result == -1) {
ALOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
close(fd);
fd = -1;
}
if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
ALOGE("Binder driver protocol does not match user space protocol!");
close(fd);
fd = -1;
}
size_t maxThreads = 15;
result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);//設置最大進程數
if (result == -1) {
ALOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
}
} else {
ALOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
}
return fd;
}
在open_driver()中咱們打開了/dev/binder驅動。這樣咱們就能夠經過mDriverFd對binder驅動進行讀寫函數
得到service_manager代理類
回到main函數中,在2中咱們經過defaultServiceManager()函數得到了service_manager代理引用。
sp<IServiceManager> defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast<IServiceManager>(
ProcessState::self()->getContextObject(NULL)); //獲取service_manager代理
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
咱們調用了ProcessState:self()->getContextObject(NULL) 來得到service_manager。在前面ProcessState中咱們已經打開了binder驅動,如今是和binder驅動進行讀寫的時候了,咱們看一下getContextObject()函數的實現。
sp<IBinder> ProcessState::getContextObject(const sp<IBinder>& /*caller*/)
{
return getStrongProxyForHandle(0);
}
繼續往下看
sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp<IBinder> result;
AutoMutex _l(mLock);
handle_entry* e = lookupHandleLocked(handle);
if (e != NULL) {
// We need to create a new BpBinder if there isn't currently one, OR we
// are unable to acquire a weak reference on this current one. See comment
// in getWeakProxyForHandle() for more info about this.
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) {
if (handle == 0) {
// Special case for context manager...
// The context manager is the only object for which we create
// a BpBinder proxy without already holding a reference.
// Perform a dummy transaction to ensure the context manager
// is registered before we create the first local reference
// to it (which will occur when creating the BpBinder).
// If a local reference is created for the BpBinder when the
// context manager is not present, the driver will fail to
// provide a reference to the context manager, but the
// driver API does not return status.
//
// Note that this is not race-free if the context manager
// dies while this code runs.
//
// TODO: add a driver API to wait for context manager, or
// stop special casing handle 0 for context manager and add
// a driver API to get a handle to the context manager with
// proper reference counting.
Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);//ping一下service_manager,確保它還活着
if (status == DEAD_OBJECT)
return NULL;
}
b = new BpBinder(handle); //生成BpBinder
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
// This little bit of nastyness is to allow us to add a primary
// reference to the remote proxy when this team doesn't have one
// but another team is sending the handle to us.
result.force_set(b);
e->refs->decWeak(this);
}
}
return result;
}
咱們傳入的handler爲0,在這裏咱們就建立了一個BpBinder(0)而後返回它。
返回以後咱們就回到了defaultServiceManager() 中,代碼就變成了下面這個樣子:
sp<IServiceManager> defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast<IServiceManager>(BpBinder(0)); //獲取servicemanager代理
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
interface_cast<IServiceManager> 是一個模板函數
template<typename INTERFACE>
inline sp<INTERFACE> interface_cast(const sp<IBinder>& obj)
{
return INTERFACE::asInterface(obj);
}
interface_cast<IServiceManager>() 也就是 IServiceManager::asInterface() 。IServiceManager::asInterface() 的實現是經過宏函數來實現,翻譯過來的代碼以下
android::sp<IServiceManager> IServiceManager::asInterface(
const android::sp<android::IBinder>& obj)
{
android::sp<IServiceManager> intr;
if (obj != NULL) {
intr = static_cast<IServiceManager*>(
obj->queryLocalInterface(
IServiceManager::descriptor).get());
if (intr == NULL) {
intr = new BpServiceManager(obj);
}
}
return intr;
}
最後咱們的defaultServiceManager() 以下:
sp<IServiceManager> defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = new BpServiceManager(BpBinder(0)); //獲取service_manager代理
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
這樣咱們就生成了service_manager的代理類BpServiceManager。咱們看一下他們的類關係圖
咱們的BpServiceManager 繼承了BpRefBase類,在初始化時,咱們傳給了它BpBinder(0),這樣BpServiceManager持有了一個handle=0的BpBinder。
同時BpServiceManger還繼承了IServiceManager接口,它實現了service_manager的proxy的功能。下面咱們經過addService()功能看一下具體實現是怎樣的。
addService()
回到media的main函數裏面,第三步3MediaPlayerService::instantiate(); 在這一步裏面註冊了MediaPlayerService服務到service_manager中。
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}
這裏的MediaPlayerService繼承了BnMediaPlayerService,它是一個本地服務端Binder實現。剛纔咱們已經分析過defaultServiceManage()函數,獲得了BpServiceManager對象。繼續看一下addService()的實現。
virtual status_t Bp::addService(const String16& name, const sp<IBinder>& service,
bool allowIsolated)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service); //將MediaPlayerService寫到序列化存儲的Parcel中
data.writeInt32(allowIsolated ? 1 : 0);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); //調用BpBinder的transact()函數
return err == NO_ERROR ? reply.readExceptionCode() : err;
}
binder序列化實現
直接將service寫入到一個序列化的Parcel裏面,咱們看一下一個Binder通訊的Service在序列化數據裏面是如何存儲的。
status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
return flatten_binder(ProcessState::self(), val, this);
}
繼續
status_t flatten_binder(const sp<ProcessState>& /*proc*/,
const sp<IBinder>& binder, Parcel* out)
{
flat_binder_object obj;
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
if (binder != NULL) {
IBinder *local = binder->localBinder();
if (!local) {
BpBinder *proxy = binder->remoteBinder();
if (proxy == NULL) {
ALOGE("null proxy");
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.type = BINDER_TYPE_HANDLE;
obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
obj.handle = handle;
obj.cookie = 0;
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
obj.cookie = reinterpret_cast<uintptr_t>(local);
}
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = 0;
obj.cookie = 0;
}
return finish_flatten_binder(binder, obj, out);
}
此時傳入的binder就是MediaPlayerService。MediaPlayerSercie繼承了BBinder函數。看一下他們的類關係
BBinder實現了IBinder中的localBinder()函數
BBinder* BBinder::localBinder()
{
return this;
}
因此咱們就將BBinder的地址存儲在了obj中。obj是一個flat_binder_object結構體。
struct flat_binder_object {
__u32 type;
__u32 flags;
union {
binder_uintptr_t binder;
__u32 handle;
};
binder_uintptr_t cookie;
};
這個結構體用來存儲序列化的binder。當binder是一個本地BBinder時,會將他的指針存儲在binder和cookie裏面。若是是一個代理BpBinder,會將它持有的handle存儲在handle中。
對binder驅動的讀寫
如今咱們已經將BnMediaPlayerService寫入到了序列化類Parcel裏面。下一步是remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); 這裏的remote()是BpServiceManager的函數,它繼承了BpRefBase的實現。BpRefBase中直接返回了mRemote對象。mRemote是咱們在開始得到Service初始化的,傳入了BpBinder(0)。
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}
return DEAD_OBJECT;
}
IPCThreadState::self()返回了一個線程靜態變量,也就是每個線程會存在惟一一個IPCThreadState。繼續看一下它的transact()函數實現。
status_t IPCThreadState::transact(int32_t handle,
uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags)
{
//...
if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);//將data寫入mOut
}
//...
if ((flags & TF_ONE_WAY) == 0) {
if (reply) {
err = waitForResponse(reply);//寫如binder
} else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);//寫如binder
}
} else {
err = waitForResponse(NULL, NULL);//寫如binder
}
return err;
}
首先執行writeTransactionData()
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
binder_transaction_data tr;
tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */
tr.target.handle = handle;
tr.code = code;
tr.flags = binderFlags;
tr.cookie = 0;
tr.sender_pid = 0;
tr.sender_euid = 0;
const status_t err = data.errorCheck();
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
tr.data.ptr.offsets = data.ipcObjects();
} else if (statusBuffer) {
tr.flags |= TF_STATUS_CODE;
*statusBuffer = err;
tr.data_size = sizeof(status_t);
tr.data.ptr.buffer = reinterpret_cast<uintptr_t>(statusBuffer);
tr.offsets_size = 0;
tr.data.ptr.offsets = 0;
} else {
return (mLastError = err);
}
mOut.writeInt32(cmd);
mOut.write(&tr, sizeof(tr));
return NO_ERROR;
}
咱們將handle值,序列化後的binder等值寫入到mOut中。而後調用waitForResponse()
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
int32_t cmd;
int32_t err;
while (1) {
if ((err=talkWithDriver()) < NO_ERROR) break;
err = mIn.errorCheck();
if (err < NO_ERROR) break;
if (mIn.dataAvail() == 0) continue;
cmd = mIn.readInt32();
IF_LOG_COMMANDS() {
alog << "Processing waitForResponse Command: "
<< getReturnString(cmd) << endl;
}
switch (cmd) {
case BR_TRANSACTION_COMPLETE:
if (!reply && !acquireResult) goto finish;
break;
case BR_DEAD_REPLY:
err = DEAD_OBJECT;
goto finish;
case BR_FAILED_REPLY:
err = FAILED_TRANSACTION;
goto finish;
case BR_ACQUIRE_RESULT:
{
ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
const int32_t result = mIn.readInt32();
if (!acquireResult) continue;
*acquireResult = result ? NO_ERROR : INVALID_OPERATION;
}
goto finish;
case BR_REPLY:
{
binder_transaction_data tr;
err = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
if (err != NO_ERROR) goto finish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
reply->ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t),
freeBuffer, this);
} else {
err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
freeBuffer(NULL,
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), this);
}
} else {
freeBuffer(NULL,
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), this);
continue;
}
}
goto finish;
default:
err = executeCommand(cmd);
if (err != NO_ERROR) goto finish;
break;
}
}
finish:
if (err != NO_ERROR) {
if (acquireResult) *acquireResult = err;
if (reply) reply->setError(err);
mLastError = err;
}
return err;
}
進入while循環,直接調用talkWithDriver()
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
if (mProcess->mDriverFD <= 0) {
return -EBADF;
}
binder_write_read bwr;
// Is the read buffer empty?
const bool needRead = mIn.dataPosition() >= mIn.dataSize();
// We don't want to write anything if we are still reading
// from data left in the input buffer and the caller
// has requested to read the next data.
const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
bwr.write_size = outAvail;
bwr.write_buffer = (uintptr_t)mOut.data();
// This is what we'll read.
if (doReceive && needRead) {
bwr.read_size = mIn.dataCapacity();
bwr.read_buffer = (uintptr_t)mIn.data();
} else {
bwr.read_size = 0;
bwr.read_buffer = 0;
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
if (outAvail != 0) {
alog << "Sending commands to driver: " << indent;
const void* cmds = (const void*)bwr.write_buffer;
const void* end = ((const uint8_t*)cmds)+bwr.write_size;
alog << HexDump(cmds, bwr.write_size) << endl;
while (cmds < end) cmds = printCommand(alog, cmds);
alog << dedent;
}
alog << "Size of receive buffer: " << bwr.read_size
<< ", needRead: " << needRead << ", doReceive: " << doReceive << endl;
}
// Return immediately if there is nothing to do.
if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
bwr.write_consumed = 0;
bwr.read_consumed = 0;
status_t err;
do {
IF_LOG_COMMANDS() {
alog << "About to read/write, write size = " << mOut.dataSize() << endl;
}
#if defined(HAVE_ANDROID_OS)
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)//進行系統調用
err = NO_ERROR;
else
err = -errno;
#else
err = INVALID_OPERATION;
#endif
if (mProcess->mDriverFD <= 0) {
err = -EBADF;
}
IF_LOG_COMMANDS() {
alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
}
} while (err == -EINTR);
IF_LOG_COMMANDS() {
alog << "Our err: " << (void*)(intptr_t)err << ", write consumed: "
<< bwr.write_consumed << " (of " << mOut.dataSize()
<< "), read consumed: " << bwr.read_consumed << endl;
}
if (err >= NO_ERROR) {
if (bwr.write_consumed > 0) {
if (bwr.write_consumed < mOut.dataSize())
mOut.remove(0, bwr.write_consumed);
else
mOut.setDataSize(0);
}
if (bwr.read_consumed > 0) {
mIn.setDataSize(bwr.read_consumed);
mIn.setDataPosition(0);
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
alog << "Remaining data size: " << mOut.dataSize() << endl;
alog << "Received commands from driver: " << indent;
const void* cmds = mIn.data();
const void* end = mIn.data() + mIn.dataSize();
alog << HexDump(cmds, mIn.dataSize()) << endl;
while (cmds < end) cmds = printReturnCommand(alog, cmds);
alog << dedent;
}
return NO_ERROR;
}
return err;
}
在talkWithDriver()中進行了系統調用ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) 。這個系統調用的功能是對/dev/binder 進行先write再read操做,這個系統調用是阻塞式的。讀寫緩衝區就是bwr變量,這個一個binder_write_read結構體。
struct binder_write_read {
binder_size_t write_size;
binder_size_t write_consumed;
binder_uintptr_t write_buffer;
binder_size_t read_size;
binder_size_t read_consumed;
binder_uintptr_t read_buffer;
};
write_size是寫入的緩衝區大小,緩存區指針存放在 write_buffer,在這裏等於mOut。
read_size是讀取緩衝區大小,緩衝區指針存放在read_buffer在這裏等於mIn。
到這,咱們經過binder驅動將MediaPlayerService註冊到了service_manager裏面。當客戶端想要使用服務是,經過」media.player」直接從service_manager中獲取服務端的代理,就能夠使用服務中的功能了 。
Service與binder驅動的通訊
做爲一個C/S架構的通訊,服務端確定在循環監聽,客戶端的請求才能及時處理。binder也不例外,binder的service端循環監聽binder驅動,當有數據時,便讀出數據進行解析執行服務程序。咱們仍是看一下media的main函數,看一下具體是怎麼實現的。
開啓線程
int main(int argc __unused, char** argv)
{
sp<ProcessState> proc(ProcessState::self());//1
sp<IServiceManager> sm = defaultServiceManager();//2
ALOGI("ServiceManager: %p", sm.get());
AudioFlinger::instantiate();
MediaPlayerService::instantiate();//3
CameraService::instantiate();
#ifdef AUDIO_LISTEN_ENABLED
ALOGI("ListenService instantiated");
ListenService::instantiate();
#endif
AudioPolicyService::instantiate();
SoundTriggerHwService::instantiate();
registerExtensions();
ProcessState::self()->startThreadPool();//4
IPCThreadState::self()->joinThreadPool()//5
}
在上一節中,咱們已經看過了1,2,3的具體執行過程,執行完3以後,MediaPlayerService已經把本身註冊到了service_manager中。而後看一下4和5的具體實現。
void ProcessState::startThreadPool()
{
AutoMutex _l(mLock);
if (!mThreadPoolStarted) {
mThreadPoolStarted = true;
spawnPooledThread(true);
}
}
加添了一個標誌位,而後調用spawnPooledThread();
void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
String8 name = makeBinderThreadName();
ALOGV("Spawning new pooled thread, name=%s\n", name.string());
sp<Thread> t = new PoolThread(isMain);
t->run(name.string());
}
}
建立了一個PoolThread,它是一個Android在C++實現的線程類Thread。看一下它的具體 實現
class PoolThread : public Thread
{
public:
PoolThread(bool isMain)
: mIsMain(isMain)
{
}
protected:
virtual bool threadLoop()
{
IPCThreadState::self()->joinThreadPool(mIsMain);
return false;
}
const bool mIsMain;
};
循環監聽
線程建立以後調用threadLoop()函數,執行IPCThreadState::self()->joinThreadPool(mIsMain); 。能夠看出main函數最後是有兩個線程,最後都走入joinThreadPool() 函數。看一下這個函數的實現。
void IPCThreadState::joinThreadPool(bool isMain)
{
LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
// This thread may have been spawned by a thread that was in the background
// scheduling group, so first we will make sure it is in the foreground
// one to avoid performing an initial transaction in the background.
set_sched_policy(mMyThreadId, SP_FOREGROUND);
status_t result;
do {
processPendingDerefs();
// now get the next command to be processed, waiting if necessary
result = getAndExecuteCommand();
if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
mProcess->mDriverFD, result);
abort();
}
// Let this thread exit the thread pool if it is no longer
// needed and it is not the main process thread.
if(result == TIMED_OUT && !isMain) {
break;
}
} while (result != -ECONNREFUSED && result != -EBADF);
LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%p\n",
(void*)pthread_self(), getpid(), (void*)result);
mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
}
在joinThreadPool()中進入一個while循環,循環中執行了getAndExecuteCommand()
讀取binder驅動
status_t IPCThreadState::getAndExecuteCommand()
{
status_t result;
int32_t cmd;
result = talkWithDriver();
if (result >= NO_ERROR) {
size_t IN = mIn.dataAvail();
if (IN < sizeof(int32_t)) return result;
cmd = mIn.readInt32();
IF_LOG_COMMANDS() {
alog << "Processing top-level Command: "
<< getReturnString(cmd) << endl;
}
result = executeCommand(cmd);
// After executing the command, ensure that the thread is returned to the
// foreground cgroup before rejoining the pool. The driver takes care of
// restoring the priority, but doesn't do anything with cgroups so we
// need to take care of that here in userspace. Note that we do make
// sure to go in the foreground after executing a transaction, but
// there are other callbacks into user code that could have changed
// our group so we want to make absolutely sure it is put back.
set_sched_policy(mMyThreadId, SP_FOREGROUND);
}
return result;
}
解析binder命令
在getAndExecuteCommand中,調用talkwithDriver(),這個函數前面咱們已經分析過,這和binder驅動進行讀寫。這時候當有客戶端請求時,咱們就把他的請求數據讀取出來,而後執行executeCommand();
status_t IPCThreadState::executeCommand(int32_t cmd)
{
BBinder* obj;
RefBase::weakref_type* refs;
status_t result = NO_ERROR;
switch (cmd) {
case BR_ERROR:
result = mIn.readInt32();
break;
case BR_OK:
break;
case BR_ACQUIRE:
// ...
break;
case BR_RELEASE:
// ...
break;
case BR_INCREFS:
// ...
break;
case BR_DECREFS:
// ...
break;
case BR_ATTEMPT_ACQUIRE:
// ...
break;
case BR_TRANSACTION:
{
binder_transaction_data tr;
result = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(result == NO_ERROR,
"Not enough command data for brTRANSACTION");
if (result != NO_ERROR) break;
Parcel buffer;
buffer.ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);
const pid_t origPid = mCallingPid;
const uid_t origUid = mCallingUid;
const int32_t origStrictModePolicy = mStrictModePolicy;
const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;
mCallingPid = tr.sender_pid;
mCallingUid = tr.sender_euid;
mLastTransactionBinderFlags = tr.flags;
int curPrio = getpriority(PRIO_PROCESS, mMyThreadId);
if (gDisableBackgroundScheduling) {
if (curPrio > ANDROID_PRIORITY_NORMAL) {
// We have inherited a reduced priority from the caller, but do not
// want to run in that state in this process. The driver set our
// priority already (though not our scheduling class), so bounce
// it back to the default before invoking the transaction.
setpriority(PRIO_PROCESS, mMyThreadId, ANDROID_PRIORITY_NORMAL);
}
} else {
if (curPrio >= ANDROID_PRIORITY_BACKGROUND) {
// We want to use the inherited priority from the caller.
// Ensure this thread is in the background scheduling class,
// since the driver won't modify scheduling classes for us.
// The scheduling group is reset to default by the caller
// once this method returns after the transaction is complete.
set_sched_policy(mMyThreadId, SP_BACKGROUND);
}
}
//ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);
Parcel reply;
status_t error;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_TRANSACTION thr " << (void*)pthread_self()
<< " / obj " << tr.target.ptr << " / code "
<< TypeCode(tr.code) << ": " << indent << buffer
<< dedent << endl
<< "Data addr = "
<< reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
<< ", offsets addr="
<< reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl;
}
if (tr.target.ptr) {//處理業務請求地地方
sp<BBinder> b((BBinder*)tr.cookie);
error = b->transact(tr.code, buffer, &reply, tr.flags);
} else {
error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
}
//ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
// mCallingPid, origPid, origUid);
if ((tr.flags & TF_ONE_WAY) == 0) {
LOG_ONEWAY("Sending reply to %d!", mCallingPid);
if (error < NO_ERROR) reply.setError(error);
sendReply(reply, 0);
} else {
LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
}
mCallingPid = origPid;
mCallingUid = origUid;
mStrictModePolicy = origStrictModePolicy;
mLastTransactionBinderFlags = origTransactionBinderFlags;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
<< tr.target.ptr << ": " << indent << reply << dedent << endl;
}
}
break;
case BR_DEAD_BINDER:
{
BpBinder *proxy = (BpBinder*)mIn.readPointer();
proxy->sendObituary();
mOut.writeInt32(BC_DEAD_BINDER_DONE);
mOut.writePointer((uintptr_t)proxy);
} break;
case BR_CLEAR_DEATH_NOTIFICATION_DONE:
{
BpBinder *proxy = (BpBinder*)mIn.readPointer();
proxy->getWeakRefs()->decWeak(proxy);
} break;
case BR_FINISHED:
result = TIMED_OUT;
break;
case BR_NOOP:
break;
case BR_SPAWN_LOOPER:
mProcess->spawnPooledThread(false);
break;
default:
printf("*** BAD COMMAND %d received from Binder driver\n", cmd);
result = UNKNOWN_ERROR;
break;
}
if (result != NO_ERROR) {
mLastError = result;
}
return result;
}
這裏就是處理不一樣的請求地方,當這次請求是一個客戶端請求時,會走到BR_TRANSACTION的case中。上面的代碼咱們能夠看到這麼一句sp<BBinder> b((BBinder*)tr.cookie) 這個是咱們從binder驅動中讀出的值。在上一節註冊service裏面,咱們是把BnMediaPlayerService指針註冊到了binder當中,若是客戶端這次請求是對MediaPlayerService服務的 ,那麼此處的cookie就是Service代碼地址的指針。而後會執行b->transact(tr.code, buffer, &reply, tr.flags); 咱們看一下BBinder中transact()的實現。
status_t BBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
data.setDataPosition(0);
status_t err = NO_ERROR;
switch (code) {
case PING_TRANSACTION:
reply->writeInt32(pingBinder());
break;
default:
err = onTransact(code, data, reply, flags);
break;
}
if (reply != NULL) {
reply->setDataPosition(0);
}
return err;
}
解析服務請求命令
而後會調用onTransact()函數,onTransact() 是一個純虛函數,每個Service會實現 這個函數。對於MediaPlayerService服務,其實如今IMediaPlayerService.cpp文件中。
// ----------------------------------------------------------------------
status_t BnMediaPlayerService::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaPlayerClient> client =
interface_cast<IMediaPlayerClient>(data.readStrongBinder());
int audioSessionId = data.readInt32();
sp<IMediaPlayer> player = create(client, audioSessionId);
reply->writeStrongBinder(player->asBinder());
return NO_ERROR;
} break;
case DECODE_URL: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaHTTPService> httpService;
if (data.readInt32()) {
httpService =
interface_cast<IMediaHTTPService>(data.readStrongBinder());
}
const char* url = data.readCString();
sp<IMemoryHeap> heap = interface_cast<IMemoryHeap>(data.readStrongBinder());
uint32_t sampleRate;
int numChannels;
audio_format_t format;
size_t size;
status_t status =
decode(httpService,
url,
&sampleRate,
&numChannels,
&format,
heap,
&size);
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->writeInt32(sampleRate);
reply->writeInt32(numChannels);
reply->writeInt32((int32_t)format);
reply->writeInt32((int32_t)size);
}
return NO_ERROR;
} break;
case DECODE_FD: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
int fd = dup(data.readFileDescriptor());
int64_t offset = data.readInt64();
int64_t length = data.readInt64();
sp<IMemoryHeap> heap = interface_cast<IMemoryHeap>(data.readStrongBinder());
uint32_t sampleRate;
int numChannels;
audio_format_t format;
size_t size;
status_t status = decode(fd, offset, length, &sampleRate, &numChannels, &format,
heap, &size);
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->writeInt32(sampleRate);
reply->writeInt32(numChannels);
reply->writeInt32((int32_t)format);
reply->writeInt32((int32_t)size);
}
return NO_ERROR;
} break;
case CREATE_MEDIA_RECORDER: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaRecorder> recorder = createMediaRecorder();
reply->writeStrongBinder(recorder->asBinder());
return NO_ERROR;
} break;
case CREATE_METADATA_RETRIEVER: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaMetadataRetriever> retriever = createMetadataRetriever();
reply->writeStrongBinder(retriever->asBinder());
return NO_ERROR;
} break;
case GET_OMX: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IOMX> omx = getOMX();
reply->writeStrongBinder(omx->asBinder());
return NO_ERROR;
} break;
case MAKE_CRYPTO: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<ICrypto> crypto = makeCrypto();
reply->writeStrongBinder(crypto->asBinder());
return NO_ERROR;
} break;
case MAKE_DRM: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IDrm> drm = makeDrm();
reply->writeStrongBinder(drm->asBinder());
return NO_ERROR;
} break;
case MAKE_HDCP: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
bool createEncryptionModule = data.readInt32();
sp<IHDCP> hdcp = makeHDCP(createEncryptionModule);
reply->writeStrongBinder(hdcp->asBinder());
return NO_ERROR;
} break;
case ADD_BATTERY_DATA: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
uint32_t params = data.readInt32();
addBatteryData(params);
return NO_ERROR;
} break;
case PULL_BATTERY_DATA: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
pullBatteryData(reply);
return NO_ERROR;
} break;
case LISTEN_FOR_REMOTE_DISPLAY: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IRemoteDisplayClient> client(
interface_cast<IRemoteDisplayClient>(data.readStrongBinder()));
String8 iface(data.readString8());
sp<IRemoteDisplay> display(listenForRemoteDisplay(client, iface));
reply->writeStrongBinder(display->asBinder());
return NO_ERROR;
} break;
case GET_CODEC_LIST: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaCodecList> mcl = getCodecList();
reply->writeStrongBinder(mcl->asBinder());
return NO_ERROR;
} break;
default:
return BBinder::onTransact(code, data, reply, flags);
}
}
當客戶端調用不一樣的函數時,就會發送 對應的cmd請求,服務端就會跟據這個cmd調用不一樣的具體實現。
這樣對於一個Service完整的binder實現,咱們這裏就分析完了。總結一下:
首選得到managerService的代理,managerService是一個特殊的binder服務,他將本身註冊爲 binder驅動的主服務。其餘客戶端直接經過handle=0像binder驅動發送請求,驅動就會把咱們的請求發送給manageService。
得到managerService代理以後,咱們將本身註冊到binder驅動和managerService裏面。binder驅動幫咱們生成一個handle整型值和咱們的Service的引用傳送到managerSerice裏面。其餘進程能夠直接經過名字找到咱們的服務
註冊完服務後,Service開啓線程監聽binder驅動是否有數據,當有數據讀出時,就根據數據中的服務地址和服務的函數對應的名字,執行相應的服務。
Client端經過binder調用Service服務
在前面分析Serivce與binder的過程當中,其實MediaPlayerService既扮演了Service端也扮演了client端。在addService的過程當中,MediaPlayerService是做service_manager的客戶端,使用了service_manager中的服務。當其餘的 binder客戶端服務在進行binder通訊時,和service_manager基本相同,只有在getService是不一樣的。service_manager的是直接經過一個handle=0的BpBinder初始化的。而普通的服務,handle值是經過binder驅動中讀取出來的。在這一節咱們分析一下ServiceManger的getService過程。
virtual sp<IBinder> getService(const String16& name) const
{
unsigned n;
for (n = 0; n < 5; n++){
sp<IBinder> svc = checkService(name);
if (svc != NULL) return svc;
ALOGI("Waiting for service %s...\n", String8(name).string());
sleep(1);
}
return NULL;
}
直接調用checkService();
virtual sp<IBinder> checkService( const String16& name) const
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);
return reply.readStrongBinder();
}
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply)在上一節已經分析過,從binder驅動讀取數據到reply當中,下面分析readStrongBinder()函數。
sp<IBinder> Parcel::readStrongBinder() const
{
sp<IBinder> val;
unflatten_binder(ProcessState::self(), *this, &val);
return val;
}
unflatten_binder()將序列化中的binder轉換成對象
status_t unflatten_binder(const sp<ProcessState>& proc,
const Parcel& in, sp<IBinder>* out)
{
const flat_binder_object* flat = in.readObject(false);
if (flat) {
switch (flat->type) {
case BINDER_TYPE_BINDER:
*out = reinterpret_cast<IBinder*>(flat->cookie);
return finish_unflatten_binder(NULL, *flat, in);
case BINDER_TYPE_HANDLE:
*out = proc->getStrongProxyForHandle(flat->handle);
return finish_unflatten_binder(
static_cast<BpBinder*>(out->get()), *flat, in);
}
}
return BAD_TYPE;
}
此處調用了getStrongProxyForHandle(),這個函數咱們在上一節獲取serviceManger代理的時候就用到了,上次直接傳入0做爲handle參數。此次的handle參數是從 binder驅動中讀取的值。
sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp<IBinder> result;
AutoMutex _l(mLock);
handle_entry* e = lookupHandleLocked(handle);
if (e != NULL) {
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) {
if (handle == 0) {
Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}
b = new BpBinder(handle);
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
result.force_set(b);
e->refs->decWeak(this);
}
}
return result;
}
直接返回BpBinder(handle)給getService()。客戶端再將BpBinder封裝在對應的BpXXXService當中,就能夠和Service端通訊了。
這樣咱們就分析完了native的Binder實現過程。