kafka_exporter 經過 Kafka Protocol Specification 收集 Brokers, Topics 以及 Consumer Groups的相關指標,使用簡單,運行高效,相比於以往經過kafka內置的腳本進行收集,因爲沒有了JVM的運行開銷,指標收集時間從分鐘級別降到秒級別,便於大規模集羣的監控。linux
git項目地址:https://github.com/danielqsj/kafka_exportergit
下載地址: https://github.com/danielqsj/kafka_exporter/releases/download/v1.2.0/kafka_exporter-1.2.0.linux-amd64.tar.gzgithub
docker安裝略過docker
grafana安裝apache
#docker run -d --name=grafana -v /etc/localtime:/etc/localtime:ro --restart=always -p 3000:3000 grafana/grafana |
prometheus啓動vim
#docker run -d --name=prometheus -p 9090:9090 --restart=always -v /etc/localtime:/etc/localtime:ro -v /home/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus |
注:提早將須要掛載的目錄建立好瀏覽器
#mkdir -pv /home/prometheus/ |
登錄到kafka服務器下載kafka_exporter
ide
# tar -zxvf kafka_exporter-1.2.0.linux-amd64.tar.gz # cd kafka_exporter-1.2.0.linux-amd64 # ./kafka_exporter --kafka.server=kafkaIP或者域名:9092 & #ss -tunl |
注:9308是kafka_exporter的端口
登錄到prometheus服務器
編寫/home/prometheus/prometheus.yml文件
#vim /home/prometheus/prometheus.yml scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: 'prometheus' static_configs: - targets: ['localhost:9090']
- job_name: 'kafka' static_configs: - targets: ['kafkaIP或者域名:9308'] labels: instance: kafka@kafkaIP或者域名 |
重啓prometheus
#docker restart prometheus |
經過瀏覽器訪問:http://prometheus服務器IP:9090,所添加的kafka_exporter狀態爲UP,就能夠去配置grafana
配置grafana
經過瀏覽器訪問:http://grafana服務器IP:3000,
添加數據源,選擇prometheus,填入prometheus服務器IP端口,點擊保存
導入監控圖表
輸入7589,光標往下移,以下圖
圖表數據就出來了