用scrapy-redis爬去新浪-以及把數據存儲到mysql\mongo

需求:爬取新浪網導航頁http://news.sina.com.cn/guide/全部下全部大類、小類、小類裏的子連接,以及子連接頁面的新聞內容。html

準備工做:mysql

a.安裝redis(windows或者linux)linux

b.安裝Redis Desktop Managerredis

c.scrapy-redis的安裝以及scrapy的安裝sql

d.安裝mongo數據庫

e.安裝mysqljson

建立項目和相關配置

建立項目命令:scrapy startproject mysinawindows

進入mysina目錄:cd mysina瀏覽器

建立spider爬到:scrapy genspider sina sina.comapp

執行運行項目腳本命令:scrapy crawl sina

1.item.py

import scrapy

class SinaItem(scrapy.Item):
    #大標題
    parent_title = scrapy.Field()
    #大標題對應的連接
    parent_url = scrapy.Field()
    #小標題
    sub_title = scrapy.Field()
    #小標題的連接
    sub_url = scrapy.Field()
    #大標題和小標題對應的目錄
    sub_file_name = scrapy.Field()
    #新聞相關內容
    son_url = scrapy.Field()
    #帖子標題
    head = scrapy.Field()
    #帖子的內容
    content = scrapy.Field()
    #帖子最後存儲的位置
    son_path = scrapy.Field()

    spider = scrapy.Field()
    url = scrapy.Field()
    crawled = scrapy.Field()

2.spiders/sina_info.py

import scrapy,os
from scrapy_redis.spiders import RedisSpider
from Sina.items import SinaItem

class SinaInfoSpider(RedisSpider):
    name = 'sinainfospider_redis'
    allowed_domains = ['sina.com.cn']
    # 添加起始路徑的時候:lpush  myspider:start_urls 起始路徑
    redis_key = 'sinainfospider:start_urls'
    # start_urls = ['http://news.sina.com.cn/guide/']
    def parse_detail(self,response):
        """解析帖子的數據"""
        item = response.meta["item"]
        #帖子連接
        item["son_url"] = response.url
        print("response.url===",response.url)
        heads = response.xpath('//h1[@class="main-title"]/text()|//div[@class="blkContainerSblk"]/h1[@id="artibodyTitle"]/text()').extract()

        head = "".join(heads)
        #把節點轉換成unicode編碼
        contents = response.xpath('//div[@class="article"]/p/text()|//div[@id="artibody"]/p/text()').extract()
        content = "".join(contents)
        item["content"] = content
        item["head"] = head
        # print("item=====",item)
        yield item

    #解析第二層的方法
    def parse_second(self,response):
        #獲得帖子的連接
        # print("parse_second--response.url====", response.url)
        son_urls = response.xpath('//a/@href').extract()
        item = response.meta["item"]
        parent_url = item["parent_url"]
        # print("item====",item)
        for url in son_urls:
            #判斷當前的頁面的連接是否屬於對應的類別
           if url.startswith(parent_url) and url.endswith(".shtml"):
               #請求
               yield scrapy.Request(url, callback=self.parse_detail, meta={"item": item})

    def parse(self, response):
        # print("response.url====",response.url)
        #因此的大標題
        parent_titles = response.xpath('//h3[@class="tit02"]/a/text()').extract()
        # 大標題對應的因此的連接
        parent_urls = response.xpath('//h3[@class="tit02"]/a/@href').extract()
        #全部小標題
        sub_titles = response.xpath('//ul[@class="list01"]/li/a/text()').extract()
        #因此小標題對應的連接
        sub_urls = response.xpath('//ul[@class="list01"]/li/a/@href').extract()

        items = []
        for i in range(len(parent_titles)):
            #http://news.sina.com.cn/ 新聞
            parent_url = parent_urls[i]
            parent_title = parent_titles[i]
            for j in range(len(sub_urls)):
                #http://news.sina.com.cn/world/  國際
                sub_url = sub_urls[j]
                sub_title = sub_titles[j]
                #判斷url前綴是否相同,相同就是屬於,不然不屬於
                if sub_url.startswith(parent_url):
                    #裝數據
                    #建立目錄
                    sub_file_name = "./Data/"+parent_title+"/"+sub_title
                    if  not os.path.exists(sub_file_name):
                        #不存在就建立
                        os.makedirs(sub_file_name)
                    item["parent_url"] = parent_url
                    item["parent_title"] = parent_title
                    item["sub_url"] = sub_url
                    item["sub_title"] = sub_title
                    item["sub_file_name"] = sub_file_name
                    items.append(item)
        #把列表的數據取出
        for  item in items:
            sub_url = item["sub_url"]
            #meta={"item":item} 傳遞item引用SinaItem對象
            yield scrapy.Request(sub_url,callback=self.parse_second,meta={"item":item})

3.pipelines.py

from datetime import datetime
import json


class ExamplePipeline(object):
    def process_item(self, item, spider):
        # 當前爬取的時間
        item["crawled"] = datetime.utcnow()
        # 爬蟲的名稱
        item["spider"] = spider.name + "_嘮叨"
        return item


class SinaPipeline(object):
    def open_spider(self, spider):
        self.file = open(spider.name + ".json", "w", encoding="utf-8")

    def close_spider(self, spider):
        self.file.close()

    def process_item(self, item, spider):
        print("item====", item)
        sub_file_name = item["sub_file_name"]
        print("sub_file_name==", sub_file_name)
        content = item["content"]
        if len(content) > 0:
            file_name = item["son_url"]
            # 切片,從右邊查找,替換
            file_name = file_name[7:file_name.rfind(".")].replace("/", "_")
            # './Data/新聞/國內',
            # './Data/新聞/國內/lslsllll.txt',
            file_path = sub_file_name + "/" + file_name + ".txt"
            with open(file_path, "w", encoding="utf-8") as f:
                f.write(content)
            item["son_path"] = file_path
        return item

4.settings.py

BOT_NAME = 'Sina'
SPIDER_MODULES = ['Sina.spiders']
NEWSPIDER_MODULE = 'Sina.spiders'
#模擬瀏覽器身份
USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'
#使用scrapy_redis本身的去重處理器
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#使用scrapy_redis本身調度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
#爬蟲能夠暫停/開始, 從爬過的位置接着爬取
SCHEDULER_PERSIST = True
#不設置的話,默認使用的是SpiderPriorityQueue
#優先級隊列
SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
#普通隊列
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
#棧
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = 1
ITEM_PIPELINES = {
   # scrapy默認配置
   'Sina.pipelines.ExamplePipeline': 300,
   'Sina.pipelines.SinaPipeline': 301,
   # 把數據默認添加到redis數據庫中
   'scrapy_redis.pipelines.RedisPipeline': 400,
}
# 日誌基本
LOG_LEVEL = 'DEBUG'
#配置redis數據庫信息
#redis數據庫主機---
REDIS_HOST = "127.0.0.1"
#redis端口
REDIS_PORT = 6379
#下載延遲1秒
# DOWNLOAD_DELAY = 1

5.start.py

from scrapy import cmdline
cmdline.execute("scrapy runspider sina_info.py".split())

6.運行start.py,的效果圖,等待指令。。。。。。

7.Redis Desktop Manager輸入如下指令

此時開始爬數據的效果圖:

8.數據保存到mongo數據庫

import json, redis, pymongo

def main():
    # 指定Redis數據庫信息
    rediscli = redis.StrictRedis(host='127.0.0.1', port=6379, db=0)
    # 指定MongoDB數據庫信息
    mongocli = pymongo.MongoClient(host='localhost', port=27017)
    # 建立數據庫名
    db = mongocli['sina']
    # 建立表名
    sheet = db['sina_items']
    offset = 0
    while True:
        # FIFO模式爲 blpop,LIFO模式爲 brpop,獲取鍵值
        source, data = rediscli.blpop(["sinainfospider_redis:items"])
        item = json.loads(data.decode("utf-8"))
        sheet.insert(item)
        offset += 1
        print(offset)
        try:
            print("Processing: %s " % item)
        except KeyError:
            print("Error procesing: %s" % item)

if __name__ == '__main__':
    main()

9.存到mysql數據庫

import redis, json, time
from pymysql import connect

# redis數據庫連接
redis_client = redis.StrictRedis(host="127.0.0.1", port=6379, db=0)
# mysql數據庫連接
# mysql_client = connect(host="127.0.0.1", user="root", password="mysql", database="sina", port=3306, charset="uft8")
mysql_client = connect(host="127.0.0.1", user="root", password="mysql",
                 database="sina", port=3306, charset='utf8')
cursor = mysql_client.cursor()

i = 1
while True:
    print(i)
    time.sleep(1)
    source, data = redis_client.blpop(["sinainfospider_redis:items"])
    item = json.loads(data.decode())
    print("source===========", source)
    print("item===========", item)
    sql = "insert into sina_items(parent_url,parent_title,sub_title,sub_url,sub_file_name,son_url,head,content,crawled,spider) values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
    params = [item["parent_url"], item["parent_title"], item["sub_title"], item["sub_url"], item["sub_file_name"],
              item["son_url"], item["head"], item["content"], item["crawled"], item["spider"], ]
    cursor.execute(sql, params)
    mysql_client.commit()
    i += 1
相關文章
相關標籤/搜索