iterator模式:提供一種方法,使之能依次訪問容器內的各個元素,而又不暴露該聚合物內部的表述方式。
STL的中心思想是將算法與數據結構分離,彼此獨立設計,最後在用iterator將他們結合在一塊兒,得到最大的適配性。node
vector是動態空間,隨着元素的加入,內部機制會自動擴充空間以容納新元素。vector的實現技術核心在於:對容器大小的控制以及從新配置時數據的移動效率。
空間配置策略:在原容器無可用空間時,將容器大小擴展爲原先的兩倍,而後將原先的數據copy,在copy的數據後面構造新元素。
數據移動效率:根據是否爲POD類型判斷移動數據的成本,並想進一切方法減小數據移動的次數,源碼中有詳解。算法
vector在進行萃取的時候,會使用萃取提供的特化版本:template<typename T> struct iterator_traits<T*> {}
數據結構
template<typename T,class Alloc=alloc> class vector { public: typedef T value_type; typedef value_type* pointer; typedef value_type* iterator; typedef value_type& reference; typedef size_t size_type; typedef ptrdiff_t difference_type; protected: iterator begin; iterator end; //使用空間的尾部 iterator end_of_storage; //可用空間的尾部 };
SGI STL的list是不只是雙向鏈表,仍是一個環形鏈表,存在一個額外的尾部結點,遵照STL算法左閉右開的要求。app
template<typename T> struct __list_node { typedef void* void_pointer; void_pointer prev; void_pointer next; T data; }; template<typename T,typename ref,typename ptr> struct __list_iterator { typedef __list_iterator<T,T&,T*> iterator; typedef __list_iterator<T,ref,ptr> self; typedef bidirectional_iterator_tag iterator_category; typedef T value; typedef ptr pointer; typedef ref reference; typedef __list_node<T>* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; link_type node; __list_iterator(link_type type) : node(type) {}; __list_iterator() {}; __list_iterator(const __list_iterator& iter) : node(iter.node) {}; bool operator==(const self& iter) const {return iter.node == node;}; bool operator!=(const self& iter) const {return iter.node != node;}; reference operator*() const {return ((*node).data;}; pointer operator->() const {return &(operator*());}; self& operator++() { node = (link_type)((*node).next); return *this; } slef operator++(int) { self temp = *this; ++*this; return temp; } self& operator() { node = (link_type)((*node).prev); return *this; } slef operator++(int) { self temp = *this; --*this; return temp; } } template<typename T,class Alloc=alloc> class list { protected: typedef void* _Void_pointer; public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef _List_node<_Tp> _Node; typedef size_t size_type; typedef ptrdiff_t difference_type; public: typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator; typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator; }
插入或者刪除都不會致使迭代器失效less
deque容許在常數時間內對頭端的元素進入插入或者刪除,由於他是動態的以連續分段的空間組成的,訪問的複雜度由迭代器去維護。這裏的map是由一小塊連續空間,其中每一個元素都是指針,指向一小段連續空間,其中每一個元素都是指針,指向另外一段連續線性空間,成爲緩衝區,默認值爲512bytes。
一個deque至少會管理8個節點,最可能是「所需節點數+2」。在結點數已經用完的狀況下,從新換一個map。
刪除或者插入的方式:若是清除/插入點以前的元素較少,就移動清除點以前的元素;反之,移動清除/插入點以後的元素。dom
template <class _Tp, class _Ref, class _Ptr> struct _Deque_iterator { typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); } typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef _Ptr pointer; typedef _Ref reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp** _Map_pointer; typedef _Deque_iterator _Self; _Tp* _M_cur; _Tp* _M_first; _Tp* _M_last; _Map_pointer _M_node; _Deque_iterator(_Tp* __x, _Map_pointer __y) : _M_cur(__x), _M_first(*__y), _M_last(*__y + _S_buffer_size()), _M_node(__y) {} _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {} _Deque_iterator(const iterator& __x) : _M_cur(__x._M_cur), _M_first(__x._M_first), _M_last(__x._M_last), _M_node(__x._M_node) {} reference operator*() const { return *_M_cur; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return _M_cur; } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ difference_type operator-(const _Self& __x) const { return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) + (_M_cur - _M_first) + (__x._M_last - __x._M_cur); } _Self& operator++() { ++_M_cur; if (_M_cur == _M_last) { _M_set_node(_M_node + 1); _M_cur = _M_first; } return *this; } _Self operator++(int) { _Self __tmp = *this; ++*this; return __tmp; } _Self& operator--() { if (_M_cur == _M_first) { _M_set_node(_M_node - 1); _M_cur = _M_last; } --_M_cur; return *this; } _Self operator--(int) { _Self __tmp = *this; --*this; return __tmp; } _Self& operator+=(difference_type __n) { difference_type __offset = __n + (_M_cur - _M_first); if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) _M_cur += __n; else { difference_type __node_offset = __offset > 0 ? __offset / difference_type(_S_buffer_size()) : -difference_type((-__offset - 1) / _S_buffer_size()) - 1; _M_set_node(_M_node + __node_offset); _M_cur = _M_first + (__offset - __node_offset * difference_type(_S_buffer_size())); } return *this; } _Self operator+(difference_type __n) const { _Self __tmp = *this; return __tmp += __n; } _Self& operator-=(difference_type __n) { return *this += -__n; } _Self operator-(difference_type __n) const { _Self __tmp = *this; return __tmp -= __n; } reference operator[](difference_type __n) const { return *(*this + __n); } bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; } bool operator!=(const _Self& __x) const { return !(*this == __x); } bool operator<(const _Self& __x) const { return (_M_node == __x._M_node) ? (_M_cur < __x._M_cur) : (_M_node < __x._M_node); } bool operator>(const _Self& __x) const { return __x < *this; } bool operator<=(const _Self& __x) const { return !(__x < *this); } bool operator>=(const _Self& __x) const { return !(*this < __x); } void _M_set_node(_Map_pointer __new_node) { _M_node = __new_node; _M_first = *__new_node; _M_last = _M_first + difference_type(_S_buffer_size()); } }; template <class _Tp, class _Ref, class _Ptr> inline _Deque_iterator<_Tp, _Ref, _Ptr> operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) { return __x + __n; } template<typename T,typename Alloc=alloc,size_t Bufsize = 0> class deque { public: typedef T value_type; typede value_type* pointer; typedef size_t size_type; typedef __deque_iterator<T,T&,T*,BufSize> iterator; protected: typedef pointer* map_pointer; iterator begin; iterator end; map_iterator map; size_type map_size; }
刪除時,使當前iterator以後/以前的迭代器失效,根據先後元素量的多少決定。ide
在SGI STL中,set底層使用紅黑樹完成,set中全部的元素都是自動排列的,在set中:value = key,而且,set中的值不容許修改。
set與multiset的區別在於使用紅黑樹的底層插入操做不一樣:insert_equal()
和insert_unique()
this
template<typename Key, typename Compare = less<Key>, class Alloc = alloc> class set { public: typedef Key key_type; typedef Key value_type; typedef rb_tree<key_type,value_type,identity<value_type>,key_compare,Alloc> rep_type; typedef typename rep_type::const_pointer pointer; typedef typename rep_type::const_pointer const_pointer; typedef typename rep_type::const_reference reference; typedef typename rep_type::const_reference const_reference; typedef typename rep_type::const_iterator iterator; typedef typename rep_type::const_iterator const_iterator; private: rep_type rep; }
基本上刪除和插入操做都不會使迭代器失效。設計
在SGI STL中,map底層使用紅黑樹完成。全部的元素都會根據元素的鍵值自動排序。map的全部元素都是pair,同時擁有value可key。
map與multimap的區別在於使用紅黑樹的底層插入操做不一樣:insert_equal()
和insert_unique()
指針
迭代器的++和--操做是以中序遍歷的過程進行的。
template<typename T1,typename T2> struct pair { typedef T1 first_type; typedef T2 second_type; T1 first; T2 second; }; template<typename Key,typename Value,typename Compare = less<Key>, class Alloc=alloc> class map { public: typedef Key key_type; typedef Value value_type; typedef Value mapped_type; typedef pair<const Key,Value> value_type; typedef Compare key_conpare; typedef rb_tree<key_type,value_type,select1st<value_type>,key_compare,Alloc> rep_type; typedef typename rep_type::pointer pointer; typedef typename rep_type::const_pointer const_pointer; typedef typaneme rep_type::iterator iterator; typedef typaneme rep_type::const_iterator const_iterator; private: rep_type rep; };
基本上刪除和插入操做不會使迭代器失效。