JavaShuo
欄目
標籤
Working hard to know your neighbor’s margins: Local descriptor learning loss(2018)(三)
時間 2020-12-30
標籤
deepfeature
計算機視覺
欄目
快樂工作
简体版
原文
原文鏈接
主要是在L2-NET上的改進,在L2-NET中中間feature map層以及最終的feature維度上都進行了監督,容易造成過擬合,因此本文做了優化 主要貢獻點:1. End-to-end的訓練模式。 2. loss簡單有效 首先: 如上圖所示,A和P表示兩個匹配集合, 例如a1和p1是一個gt中的匹配, d(a1,p1)是兩個匹配之間的descr
>>阅读原文<<
相關文章
1.
Know your program: introduction to PE/COFF
2.
How to know your application’s battery stats
3.
37 Reasons why your Neural Network is not working
4.
The 9 Deep Learning Papers You Need To Know About
5.
Your local changes to the following files would be overwritten by merge: ... Please, commit your cha
6.
The Key To Accelerating Your Coding Skills
7.
Git Learning Part III - working remotely (Github)
8.
Try and Try Your Hard
9.
A Few Useful Things to Know about Machine Learning
10.
論文閱讀筆記《Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning》
更多相關文章...
•
Spring實例化Bean的三種方法
-
Spring教程
•
TCP三次握手建立連接的過程
-
TCP/IP教程
•
RxJava操作符(三)Filtering
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
descriptor
margins
know
working
local
hard
learning
easy->hard
medium&hard
Deep Learning
快樂工作
Redis教程
Spring教程
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基礎應用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗體焦點監聽器
6.
DNS部署(二)DNS的解析(正向、反向、雙向、郵件解析及域名轉換)
7.
Java基礎(十九)集合(1)集合中主要接口和實現類
8.
瀏覽器工作原理學習筆記
9.
chrome瀏覽器構架學習筆記
10.
eclipse引用sun.misc開頭的類
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Know your program: introduction to PE/COFF
2.
How to know your application’s battery stats
3.
37 Reasons why your Neural Network is not working
4.
The 9 Deep Learning Papers You Need To Know About
5.
Your local changes to the following files would be overwritten by merge: ... Please, commit your cha
6.
The Key To Accelerating Your Coding Skills
7.
Git Learning Part III - working remotely (Github)
8.
Try and Try Your Hard
9.
A Few Useful Things to Know about Machine Learning
10.
論文閱讀筆記《Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning》
>>更多相關文章<<