深刻JDK源碼之HashMap類

基於哈希表的 Map 接口的實現。此實現提供全部可選的映射操做,並容許使用 null 值和 null 鍵。(除了非同步和容許使用 null 以外,HashMap 類與 Hashtable 大體相同。)此類不保證映射的順序,特別是它不保證該順序恆久不變。java

此實現假定哈希函數將元素適當地分佈在各桶之間,可爲基本操做(get 和 put)提供穩定的性能。迭代 collection 視圖所需的時間與 HashMap 實例的「容量」(桶的數量)及其大小(鍵-值映射關係數)成比例。因此,若是迭代性能很重要,則不要將初始容量設置得過高(或將加載因子設置得過低)。算法

HashMap的實例有兩個參數影響其性能:初始容量加載因子容量是哈希表中桶的數量,初始容量只是哈希表在建立時的容量。加載因子是哈希表在其容量自動增長以前能夠達到多滿的一種尺度。當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 rehash 操做(即重建內部數據結構),從而哈希表將具備大約兩倍的桶數。數組

一般,默認加載因子 (0.75) 在時間和空間成本上尋求一種折衷。加載因子太高雖然減小了空間開銷,但同時也增長了查詢成本(在大多數 HashMap 類的操做中,包括 get 和 put 操做,都反映了這一點)。在設置初始容量時應該考慮到映射中所需的條目數及其加載因子,以便最大限度地減小 rehash 操做次數。若是初始容量大於最大條目數除以加載因子,則不會發生 rehash 操做。安全

若是不少映射關係要存儲在 HashMap 實例中,則相對於按需執行自動的 rehash 操做以增大表的容量來講,使用足夠大的初始容量建立它將使得映射關係能更有效地存儲。數據結構

##HashMap的數據結構## HashMap用了一個名字爲table的Entry類型數組;數組中的每一項又是一個Entry鏈表。 在此輸入圖片描述app

// 默認的初始化大小
	static final int DEFAULT_INITIAL_CAPACITY = 16;
	// 最大的容量
	static final int MAXIMUM_CAPACITY = 1 << 30;
	// 負載因子
	static final float DEFAULT_LOAD_FACTOR = 0.75f;
	// 儲存key-value鍵值對的數組,一個鍵值對對象映射一個Entry對象
	transient Entry[] table;
	// 鍵值對的數目
	transient int size;
	// 調整HashMap大小門檻,該變量包含了HashMap能容納的key-value對的極限,它的值等於HashMap的容量乘以負載因子
	int threshold;
	// 加載因子
	final float loadFactor;
	// HashMap結構修改次數,防止在遍歷時,有其餘的線程在進行修改
	transient volatile int modCount;
    public HashMap(int initialCapacity, float loadFactor) {
		if (initialCapacity < 0)
			throw new IllegalArgumentException("Illegal initial capacity: "
					+ initialCapacity);
		if (initialCapacity > MAXIMUM_CAPACITY)
			initialCapacity = MAXIMUM_CAPACITY;
		if (loadFactor <= 0 || Float.isNaN(loadFactor))
			throw new IllegalArgumentException("Illegal load factor: "
					+ loadFactor);

		// Find a power of 2 >= initialCapacity
		int capacity = 1;
		// 使得capacity 的大小爲2的冪,至於爲何,請看下面
		while (capacity < initialCapacity)
			capacity <<= 1;

		this.loadFactor = loadFactor;
		threshold = (int) (capacity * loadFactor);
		table = new Entry[capacity];
		init();
	}

下面是用於包裝key-value映射關係的Entry,它是HashMap的靜態內部類:函數

static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        public final int hashCode() {
            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        /**
         * This method is invoked whenever the value in an entry is
         * overwritten by an invocation of put(k,v) for a key k that's already
         * in the HashMap.
         */
        void recordAccess(HashMap<K,V> m) {
        }

        /**
         * This method is invoked whenever the entry is
         * removed from the table.
         */
        void recordRemoval(HashMap<K,V> m) {
        }
    }

##HashMap的put和get及remove方法##性能

// 根據key獲取value
	public V get(Object key) {
		if (key == null)
			return getForNullKey();
		//根據key的hashCode值計算它的hash碼
		int hash = hash(key.hashCode());
		//直接取出table數組中指定索引處的值
		for (Entry<K, V> e = table[indexFor(hash, table.length)]; 
		e != null; 
		//搜索該Entry鏈的下一個Entry
		e = e.next) {
			Object k;
			//若是該Entry的key與被搜索key相同
			if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
				return e.value;
		}
		return null;
	}

	private V getForNullKey() {
		//key爲null,hash碼爲0,也就是說key爲null的Entry位於table[0]的Entry鏈上
		for (Entry<K, V> e = table[0]; e != null; e = e.next) {
			if (e.key == null)
				return e.value;
		}
		return null;
	}
    public V put(K key, V value) {
		if (key == null)
			return putForNullKey(value);
		//根據key的hashCode值計算它的hash碼
		int hash = hash(key.hashCode());
		//搜索指定hash值對應table中的索引值
		int i = indexFor(hash, table.length);
		for (Entry<K, V> e = table[i]; e != null; e = e.next) {
			Object k;
			//若是找到指定key與須要放入的key相等(hash值相同,經過equals比較返回true)
			if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
				V oldValue = e.value;
				//新的值覆蓋舊值
				e.value = value;
				//這個方法是個空方法,多是表示個標記,字面意思是表示記錄訪問
				e.recordAccess(this);
				//返回舊值
				return oldValue;
			}
		}

		modCount++;
		//若是i處索引處的Entry爲null,表示此處尚未Entry
		//將key、value添加到i索引處
		addEntry(hash, key, value, i);
		return null;
	}

	//key=null的鍵值對,默認存放table[0]的Entry鏈
	private V putForNullKey(V value) {
		for (Entry<K, V> e = table[0]; e != null; e = e.next) {
			if (e.key == null) {
				V oldValue = e.value;
				e.value = value;
				e.recordAccess(this);
				return oldValue;
			}
		}
		modCount++;
		addEntry(0, null, value, 0);
		return null;
	}
        void addEntry(int hash, K key, V value, int bucketIndex) {
		Entry<K, V> e = table[bucketIndex];
		table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
		if (size++ >= threshold)
			resize(2 * table.length);
	}
    //根據鍵值移除key-value映射對象
	public V remove(Object key) {
		Entry<K, V> e = removeEntryForKey(key);
		return (e == null ? null : e.value);
	}

	final Entry<K, V> removeEntryForKey(Object key) {
		int hash = (key == null) ? 0 : hash(key.hashCode());
		int i = indexFor(hash, table.length);
		Entry<K, V> prev = table[i];
		Entry<K, V> e = prev;

		while (e != null) {
			Entry<K, V> next = e.next;
			Object k;
			if (e.hash == hash
					&& ((k = e.key) == key || (key != null && key.equals(k)))) {
				modCount++;
				size--;
				if (prev == e)
					table[i] = next;
				else
					prev.next = next;
				//空方法,表示移除記錄
				e.recordRemoval(this);
				return e;
			}
			prev = e;
			e = next;
		}

		return e;
	}

##HashMap的hash算法和size大小調整##this

static int hash(int h) {//這裏不是很懂,得向他人請教
		// This function ensures that hashCodes that differ only by
		// constant multiples at each bit position have a bounded
		// number of collisions (approximately 8 at default load factor).
		h ^= (h >>> 20) ^ (h >>> 12);
		return h ^ (h >>> 7) ^ (h >>> 4);
	}

	/**
	 * Returns index for hash code h.
	 */
	// 根據hash碼求的數組小標並返回,當length爲2的冪時,h & (length-1)等價於h%(length-1),這裏也就是爲何前面說table的長度必須是2的冪
	static int indexFor(int h, int length) {
		return h & (length - 1);
	}
    // 調整大小
	void resize(int newCapacity) {
		Entry[] oldTable = table;
		int oldCapacity = oldTable.length;
		if (oldCapacity == MAXIMUM_CAPACITY) {
			threshold = Integer.MAX_VALUE;
			return;
		}

		Entry[] newTable = new Entry[newCapacity];
		transfer(newTable);
		table = newTable;
		threshold = (int) (newCapacity * loadFactor);
	}

	/**
	 * Transfers all entries from current table to newTable.
	 */
	void transfer(Entry[] newTable) {
		Entry[] src = table;
		int newCapacity = newTable.length;
		for (int j = 0; j < src.length; j++) {
			Entry<K, V> e = src[j];
			if (e != null) {
				src[j] = null;
				do {    
                                        //注意這裏哈,HashMap不保證順序恆久不變
                                        //在這裏能夠找到答案
					Entry<K, V> next = e.next;
					int i = indexFor(e.hash, newCapacity);
					e.next = newTable[i];
					newTable[i] = e;
					e = next;
				} while (e != null);
			}
		}
	}

##HashMap與Set的關係## Set表明一種集合元素無序、集合元素不可重複的集合。若是隻考察HashMap中的key,不難發現集合中的key有一個特徵:全部的key不能重複,key之間無序。具有了Set的特徵,全部的key集合起來組成一個Set集合。同理全部的Entry集合起來,也是一個Set集合。而value是能夠重複的,不能組成一個Set集合,在HashMap源代碼中提供了values()方法把value集合起來組成Collection集合。線程

private abstract class HashIterator<E> implements Iterator<E> {
		Entry<K, V> next; // next entry to return
		int expectedModCount; // For fast-fail
		int index; // current slot
		Entry<K, V> current; // current entry

		HashIterator() {
			expectedModCount = modCount;
			if (size > 0) { // advance to first entry
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
		}

		public final boolean hasNext() {
			return next != null;
		}

		final Entry<K, V> nextEntry() {
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Entry<K, V> e = next;
			if (e == null)
				throw new NoSuchElementException();

			if ((next = e.next) == null) {
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
			current = e;
			return e;
		}

		public void remove() {
			if (current == null)
				throw new IllegalStateException();
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Object k = current.key;
			current = null;
			HashMap.this.removeEntryForKey(k);
			expectedModCount = modCount;
		}

	}
     private final class ValueIterator extends HashIterator<V> {
		public V next() {
			return nextEntry().value;
		}
	}

	private final class KeyIterator extends HashIterator<K> {
		public K next() {
			return nextEntry().getKey();
		}
	}

	private final class EntryIterator extends HashIterator<Map.Entry<K, V>> {
		public Map.Entry<K, V> next() {
			return nextEntry();
		}
	}
	Iterator<K> newKeyIterator() {
		return new KeyIterator();
	}
	Iterator<V> newValueIterator() {
		return new ValueIterator();
	}
	Iterator<Map.Entry<K, V>> newEntryIterator() {
		return new EntryIterator();
	}
	// Views

	private transient Set<Map.Entry<K, V>> entrySet = null;
	 //把全部的key集合成Set集合
	public Set<K> keySet() {
		Set<K> ks = keySet;
		return (ks != null ? ks : (keySet = new KeySet()));
	}
 
	private final class KeySet extends AbstractSet<K> {
		public Iterator<K> iterator() {
			return newKeyIterator();
		}

		public int size() {
			return size;
		}

		public boolean contains(Object o) {
			return containsKey(o);
		}

		public boolean remove(Object o) {
			return HashMap.this.removeEntryForKey(o) != null;
		}

		public void clear() {
			HashMap.this.clear();
		}
	}
    //把全部的values集合成Collection集合
	public Collection<V> values() {
		Collection<V> vs = values;
		return (vs != null ? vs : (values = new Values()));
	}
	
	private final class Values extends AbstractCollection<V> {
		public Iterator<V> iterator() {
			return newValueIterator();
		}
		public int size() {
			return size;
		}
		public boolean contains(Object o) {
			return containsValue(o);
		}

		public void clear() {
			HashMap.this.clear();
		}
	}
	  //把全部的Entry對象集合成Set集合
	public Set<Map.Entry<K, V>> entrySet() {
		return entrySet0();
	}

	private Set<Map.Entry<K, V>> entrySet0() {
		Set<Map.Entry<K, V>> es = entrySet;
		return es != null ? es : (entrySet = new EntrySet());
	}

	private final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
		public Iterator<Map.Entry<K, V>> iterator() {
			return newEntryIterator();
		}
		public boolean contains(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry<K, V> e = (Map.Entry<K, V>) o;
			Entry<K, V> candidate = getEntry(e.getKey());
			return candidate != null && candidate.equals(e);
		}
		public boolean remove(Object o) {
			return removeMapping(o) != null;
		}
		public int size() {
			return size;
		}
		public void clear() {
			HashMap.this.clear();
		}
	}

##Fail-Fast策略(速錯)## HashMap不是線程安全的,所以若是在使用迭代器的過程當中有其餘線程修改了map,那麼將拋ConcurrentModificationException,這就是所謂fail-fast策略(速錯),這一策略在源碼中的實現是經過modCount域,modCount顧名思義就是修改次數,對HashMap內容的修改都將增長這個值,那麼在迭代器初始化過程當中會將這個值賦給迭代器的expectedModCount。在迭代過程當中,判斷modCount跟expectedModCount是否相等,若是不相等就表示已經有其餘線程修改了。

private abstract class HashIterator<E> implements Iterator<E> {
		Entry<K, V> next; // next entry to return
		int expectedModCount; // For fast-fail
		int index; // current slot
		Entry<K, V> current; // current entry

		HashIterator() {
			expectedModCount = modCount;
			if (size > 0) { // advance to first entry
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
		}

		public final boolean hasNext() {
			return next != null;
		}

		final Entry<K, V> nextEntry() {
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Entry<K, V> e = next;
			if (e == null)
				throw new NoSuchElementException();

			if ((next = e.next) == null) {
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
			current = e;
			return e;
		}

		public void remove() {
			if (current == null)
				throw new IllegalStateException();
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Object k = current.key;
			current = null;
			HashMap.this.removeEntryForKey(k);
			expectedModCount = modCount;
		}

	}
相關文章
相關標籤/搜索