深刻理解Go-goroutine的實現及Scheduler分析

在學習Go的過程當中,最讓人驚歎的莫過於goroutine了。可是goroutine是什麼,咱們用go關鍵字就能夠建立一個goroutine,這麼多的goroutine之間,是如何調度的呢?html

1. 結構概覽

在看Go源碼的過程當中,遍地可見g、p、m,咱們首先就看一下這些關鍵字的結構及相互之間的關係web

1.1. 數據結構

這裏咱們僅列出來告終構體裏面比較關鍵的一些成員bootstrap

1.1.1. G(gouroutine)

goroutine是運行時的最小執行單元segmentfault

type g struct {
	// Stack parameters.
	// stack describes the actual stack memory: [stack.lo, stack.hi).
	// stackguard0 is the stack pointer compared in the Go stack growth prologue.
	// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
	// stackguard1 is the stack pointer compared in the C stack growth prologue.
	// It is stack.lo+StackGuard on g0 and gsignal stacks.
	// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
  // 當前g使用的棧空間,stack結構包括 [lo, hi]兩個成員
	stack       stack   // offset known to runtime/cgo
  // 用於檢測是否須要進行棧擴張,go代碼使用
	stackguard0 uintptr // offset known to liblink
  // 用於檢測是否須要進行棧擴展,原生代碼使用的
	stackguard1 uintptr // offset known to liblink
  // 當前g所綁定的m
	m              *m      // current m; offset known to arm liblink
  // 當前g的調度數據,當goroutine切換時,保存當前g的上下文,用於恢復
	sched          gobuf
	// g當前的狀態
	atomicstatus   uint32
  // 當前g的id
	goid           int64
  // 下一個g的地址,經過guintptr結構體的ptr set函數能夠設置和獲取下一個g,經過這個字段和sched.gfreeStack sched.gfreeNoStack 能夠把 free g串成一個鏈表
	schedlink      guintptr
  // 判斷g是否容許被搶佔
	preempt        bool       // preemption signal, duplicates stackguard0 = stackpreempt
	// g是否要求要回到這個M執行, 有的時候g中斷了恢復會要求使用原來的M執行
	lockedm        muintptr
}
複製代碼

1.1.2. P(process)

P是M運行G所需的資源windows

type p struct {
   lock mutex

   id          int32
   // p的狀態,稍後介紹
   status      uint32 // one of pidle/prunning/...
   // 下一個p的地址,可參考 g.schedlink
   link        puintptr
   // p所關聯的m
   m           muintptr   // back-link to associated m (nil if idle)
   // 內存分配的時候用的,p所屬的m的mcache用的也是這個
   mcache      *mcache
  
   // Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
   // 從sched中獲取並緩存的id,避免每次分配goid都從sched分配
	 goidcache    uint64
	 goidcacheend uint64

   // Queue of runnable goroutines. Accessed without lock.
   // p 本地的runnbale的goroutine造成的隊列
   runqhead uint32
   runqtail uint32
   runq     [256]guintptr
   // runnext, if non-nil, is a runnable G that was ready'd by
   // the current G and should be run next instead of what's in
   // runq if there's time remaining in the running G's time
   // slice. It will inherit the time left in the current time
   // slice. If a set of goroutines is locked in a
   // communicate-and-wait pattern, this schedules that set as a
   // unit and eliminates the (potentially large) scheduling
   // latency that otherwise arises from adding the ready'd
   // goroutines to the end of the run queue.
   // 下一個執行的g,若是是nil,則從隊列中獲取下一個執行的g
   runnext guintptr

   // Available G's (status == Gdead)
   // 狀態爲 Gdead的g的列表,能夠進行復用
   gfree    *g
   gfreecnt int32
}
複製代碼

1.1.3. M(machine)

type m struct {
   // g0是用於調度和執行系統調用的特殊g
   g0      *g     // goroutine with scheduling stack
	 // m當前運行的g
   curg          *g       // current running goroutine
   // 當前擁有的p
   p             puintptr // attached p for executing go code (nil if not executing go code)
   // 線程的 local storage
   tls           [6]uintptr   // thread-local storage
   // 喚醒m時,m會擁有這個p
   nextp         puintptr
   id            int64
   // 若是 !="", 繼續運行curg
   preemptoff    string // if != "", keep curg running on this m
   // 自旋狀態,用於判斷m是否工做已結束,並尋找g進行工做
   spinning      bool // m is out of work and is actively looking for work
   // 用於判斷m是否進行休眠狀態
   blocked       bool // m is blocked on a note
	 // m休眠和喚醒經過這個,note裏面有一個成員key,對這個key所指向的地址進行值的修改,進而達到喚醒和休眠的目的
   park          note
   // 全部m組成的一個鏈表
   alllink       *m // on allm
   // 下一個m,經過這個字段和sched.midle 能夠串成一個m的空閒鏈表
   schedlink     muintptr
   // mcache,m擁有p的時候,會把本身的mcache給p
   mcache        *mcache
   // lockedm的對應值
   lockedg       guintptr
   // 待釋放的m的list,經過sched.freem 串成一個鏈表
   freelink      *m      // on sched.freem
}
複製代碼

1.1.4. sched

type schedt struct {
   // 全局的go id分配
   goidgen  uint64
   // 記錄的最後一次從i/o中查詢g的時間
   lastpoll uint64

   lock mutex

   // When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be
   // sure to call checkdead().
	 // m的空閒鏈表,結合m.schedlink 就能夠組成一個空閒鏈表了
   midle        muintptr // idle m's waiting for work
   nmidle       int32    // number of idle m's waiting for work
   nmidlelocked int32    // number of locked m's waiting for work
   // 下一個m的id,也用來記錄建立的m數量
   mnext        int64    // number of m's that have been created and next M ID
   // 最多容許的m的數量
   maxmcount    int32    // maximum number of m's allowed (or die)
   nmsys        int32    // number of system m's not counted for deadlock
   // free掉的m的數量,exit的m的數量
   nmfreed      int64    // cumulative number of freed m's

   ngsys uint32 // number of system goroutines; updated atomically

   pidle      puintptr // idle p's
   npidle     uint32
   nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go.

   // Global runnable queue.
   // 這個就是全局的g的隊列了,若是p的本地隊列沒有g或者太多,會跟全局隊列進行平衡
   // 根據runqhead能夠獲取隊列頭的g,而後根據g.schedlink 獲取下一個,從而造成了一個鏈表
   runqhead guintptr
   runqtail guintptr
   runqsize int32

   // freem is the list of m's waiting to be freed when their
   // m.exited is set. Linked through m.freelink.
   // 等待釋放的m的列表
   freem *m
}
複製代碼

在這裏插一下狀態的解析數組

1.1.5. g.status

  • _Gidle: goroutine剛剛建立尚未初始化
  • _Grunnable: goroutine處於運行隊列中,可是尚未運行,沒有本身的棧
  • _Grunning: 這個狀態的g可能處於運行用戶代碼的過程當中,擁有本身的m和p
  • _Gsyscall: 運行systemcall中
  • _Gwaiting: 這個狀態的goroutine正在阻塞中,相似於等待channel
  • _Gdead: 這個狀態的g沒有被使用,有多是剛剛退出,也有多是正在初始化中
  • _Gcopystack: 表示g當前的棧正在被移除,新棧分配中

1.1.6. p.status

  • _Pidle: 空閒狀態,此時p不綁定m
  • _Prunning: m獲取到p的時候,p的狀態就是這個狀態了,而後m可使用這個p的資源運行g
  • _Psyscall: 當go調用原生代碼,原生代碼又反過來調用go的時候,使用的p就會變成此態
  • _Pdead: 當運行中,須要減小p的數量時,被減掉的p的狀態就是這個了

1.1.7. m.status

m的status沒有p、g的那麼明確,可是在運行流程的分析中,主要有如下幾個狀態緩存

  • 運行中: 拿到p,執行g的過程當中
  • 運行原生代碼: 正在執行原聲代碼或者阻塞的syscall
  • 休眠中: m發現無待運行的g時,進入休眠,並加入到空閒列表中
  • 自旋中(spining): 當前工做結束,正在尋找下一個待運行的g

在上面的結構中,存在不少的鏈表,g m p結構中還有指向對方地址的成員,那麼他們的關係究竟是什麼樣的數據結構

咱們能夠從上圖,簡單的表述一下 m p g的關係app

2. 流程概覽

從下圖,能夠簡單的一窺go的整個調度流程的大概less

接下來咱們就從源碼的角度來具體的分析整個調度流程(本人彙編不照,彙編方面的就不分析了🤪)

3. 源碼分析

3.1. 初始化

go的啓動流程分爲4步

  1. call osinit, 這裏就是設置了全局變量ncpu = cpu核心數量
  2. call schedinit
  3. make & queue new G (runtime.newproc, go func()也是調用這個函數來建立goroutine)
  4. call runtime·mstart

其中,schedinit 就是調度器的初始化,出去schedinit 中對內存分配,垃圾回收等操做,針對調度器的初始化大體就是初始化自身,設置最大的maxmcount, 肯定p的數量並初始化這些操做

3.1.1. schedinit

schedinit這裏對當前m進行了初始化,並根據osinit獲取到的cpu核數和設置的GOMAXPROCS 肯定p的數量,並進行初始化

func schedinit() {
	// 從TLS或者專用寄存器獲取當前g的指針類型
	_g_ := getg()
	// 設置m最大的數量
	sched.maxmcount = 10000

	// 初始化棧的複用空間
	stackinit()
	// 初始化當前m
	mcommoninit(_g_.m)

	// osinit的時候會設置 ncpu這個全局變量,這裏就是根據cpu核心數和參數GOMAXPROCS來肯定p的數量
	procs := ncpu
	if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
		procs = n
	}
	// 生成設定數量的p
	if procresize(procs) != nil {
		throw("unknown runnable goroutine during bootstrap")
	}
}
複製代碼

3.1.2. mcommoninit

func mcommoninit(mp *m) {
	_g_ := getg()

	lock(&sched.lock)
	// 判斷mnext的值是否溢出,mnext須要賦值給m.id
	if sched.mnext+1 < sched.mnext {
		throw("runtime: thread ID overflow")
	}
	mp.id = sched.mnext
	sched.mnext++
	// 判斷m的數量是否比maxmcount設定的要多,若是超出直接報異常
	checkmcount()
	// 建立一個新的g用於處理signal,並分配棧
	mpreinit(mp)
	if mp.gsignal != nil {
		mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
	}

	// Add to allm so garbage collector doesn't free g->m
	// when it is just in a register or thread-local storage.
	// 接下來的兩行,首先將當前m放到allm的頭,而後原子操做,將當前m的地址,賦值給m,這樣就將當前m添加到了allm鏈表的頭了
	mp.alllink = allm

	// NumCgoCall() iterates over allm w/o schedlock,
	// so we need to publish it safely.
	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
	unlock(&sched.lock)

	// Allocate memory to hold a cgo traceback if the cgo call crashes.
	if iscgo || GOOS == "solaris" || GOOS == "windows" {
		mp.cgoCallers = new(cgoCallers)
	}
}
複製代碼

在這裏就開始涉及到了m鏈表了,這個鏈表能夠以下圖表示,其餘的p g鏈表能夠參考,只是使用的結構體的字段不同

3.1.3. allm鏈表示意圖

3.1.4. procresize

更改p的數量,多退少補的原則,在初始化過程當中,因爲最開始是沒有p的,因此這裏的做用就是初始化設定數量的p了

procesize 不只在初始化的時候會調用,當用戶手動調用 runtime.GOMAXPROCS 的時候,會從新設定 nprocs,而後執行 startTheWorld()startTheWorld()會是使用新的 nprocs 再次調用procresize 這個方法

func procresize(nprocs int32) *p {
	old := gomaxprocs
	if old < 0 || nprocs <= 0 {
		throw("procresize: invalid arg")
	}
	// update statistics
	now := nanotime()
	if sched.procresizetime != 0 {
		sched.totaltime += int64(old) * (now - sched.procresizetime)
	}
	sched.procresizetime = now

	// Grow allp if necessary.
	// 若是新給的p的數量比原先的p的數量多,則新建增加的p
	if nprocs > int32(len(allp)) {
		// Synchronize with retake, which could be running
		// concurrently since it doesn't run on a P.
		lock(&allpLock)
		// 判斷allp 的cap是否知足增加後的長度,知足就直接使用,不知足,則須要擴張這個slice
		if nprocs <= int32(cap(allp)) {
			allp = allp[:nprocs]
		} else {
			nallp := make([]*p, nprocs)
			// Copy everything up to allp's cap so we
			// never lose old allocated Ps.
			copy(nallp, allp[:cap(allp)])
			allp = nallp
		}
		unlock(&allpLock)
	}

	// initialize new P's
	// 初始化新增的p
	for i := int32(0); i < nprocs; i++ {
		pp := allp[i]
		if pp == nil {
			pp = new(p)
			pp.id = i
			pp.status = _Pgcstop
			pp.sudogcache = pp.sudogbuf[:0]
			for i := range pp.deferpool {
				pp.deferpool[i] = pp.deferpoolbuf[i][:0]
			}
			pp.wbBuf.reset()
			// allp是一個slice,直接將新增的p放到對應的索引下面就ok了
			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
		}
		if pp.mcache == nil {
			// 初始化時,old=0,第一個新建的p給當前的m使用
			if old == 0 && i == 0 {
				if getg().m.mcache == nil {
					throw("missing mcache?")
				}
				pp.mcache = getg().m.mcache // bootstrap
			} else {
				// 爲p分配內存
				pp.mcache = allocmcache()
			}
		}
	}

	// free unused P's
	// 釋放掉多餘的p,當新設置的p的數量,比原先設定的p的數量少的時候,會走到這個流程
	// 經過 runtime.GOMAXPROCS 就能夠動態的修改nprocs
	for i := nprocs; i < old; i++ {
		p := allp[i]
		// move all runnable goroutines to the global queue
		// 把當前p的運行隊列裏的g轉移到全局的g的隊列
		for p.runqhead != p.runqtail {
			// pop from tail of local queue
			p.runqtail--
			gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
			// push onto head of global queue
			globrunqputhead(gp)
		}
		// 把runnext裏的g也轉移到全局隊列
		if p.runnext != 0 {
			globrunqputhead(p.runnext.ptr())
			p.runnext = 0
		}
		// if there's a background worker, make it runnable and put
		// it on the global queue so it can clean itself up
		// 若是有gc worker的話,修改g的狀態,而後再把它放到全局隊列中
		if gp := p.gcBgMarkWorker.ptr(); gp != nil {
			casgstatus(gp, _Gwaiting, _Grunnable)
			globrunqput(gp)
			// This assignment doesn't race because the
			// world is stopped.
			p.gcBgMarkWorker.set(nil)
		}
		// sudoig的buf和cache,以及deferpool所有清空
		for i := range p.sudogbuf {
			p.sudogbuf[i] = nil
		}
		p.sudogcache = p.sudogbuf[:0]
		for i := range p.deferpool {
			for j := range p.deferpoolbuf[i] {
				p.deferpoolbuf[i][j] = nil
			}
			p.deferpool[i] = p.deferpoolbuf[i][:0]
		}
		// 釋放掉當前p的mcache
		freemcache(p.mcache)
		p.mcache = nil
		// 把當前p的gfree轉移到全局
		gfpurge(p)
		// 修改p的狀態,讓他自生自滅去了
		p.status = _Pdead
		// can't free P itself because it can be referenced by an M in syscall
	}

	// Trim allp.
	if int32(len(allp)) != nprocs {
		lock(&allpLock)
		allp = allp[:nprocs]
		unlock(&allpLock)
	}
	// 判斷當前g是否有p,有的話更改當前使用的p的狀態,繼續使用
	_g_ := getg()
	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
		// continue to use the current P
		_g_.m.p.ptr().status = _Prunning
	} else {
		// release the current P and acquire allp[0]
		// 若是當前g有p,可是擁有的是已經釋放的p,則再也不使用這個p,從新分配
		if _g_.m.p != 0 {
			_g_.m.p.ptr().m = 0
		}
		// 分配allp[0]給當前g使用
		_g_.m.p = 0
		_g_.m.mcache = nil
		p := allp[0]
		p.m = 0
		p.status = _Pidle
		// 將p m g綁定,並把m.mcache指向p.mcache,並修改p的狀態爲_Prunning
		acquirep(p)
	}
	var runnablePs *p
	for i := nprocs - 1; i >= 0; i-- {
		p := allp[i]
		if _g_.m.p.ptr() == p {
			continue
		}
		p.status = _Pidle
		// 根據 runqempty 來判斷當前p的g運行隊列是否爲空
		if runqempty(p) {
			// g運行隊列爲空的p,放到 sched的pidle隊列裏面
			pidleput(p)
		} else {
			// g 運行隊列不爲空的p,組成一個可運行隊列,並最後返回
			p.m.set(mget())
			p.link.set(runnablePs)
			runnablePs = p
		}
	}
	stealOrder.reset(uint32(nprocs))
	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
	atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
	return runnablePs
}
複製代碼
  • runqempty: 這個函數比較簡單,就不深究了,就是根據 p.runqtail == p.runqhead 和 p.runnext 來判斷有沒有待運行的g
  • pidleput: 將當前的p設置爲 sched.pidle,而後根據p.link將空閒p串聯起來,可參考上圖allm的鏈表示意圖

3.2. 任務

建立一個goroutine,只須要使用 go func 就能夠了,編譯器會將go func 翻譯成 newproc 進行調用,那麼新建的任務是如何調用的呢,咱們從建立開始進行跟蹤

3.2.1. newproc

newproc 函數獲取了參數和當前g的pc信息,並經過g0調用newproc1去真正的執行建立或獲取可用的g

func newproc(siz int32, fn *funcval) {
	// 獲取第一參數地址
	argp := add(unsafe.Pointer(&fn), sys.PtrSize)
	// 獲取當前執行的g
	gp := getg()
	// 獲取當前g的pc
	pc := getcallerpc()
	systemstack(func() {
		// 使用g0去執行newproc1函數
		newproc1(fn, (*uint8)(argp), siz, gp, pc)
	})
}
複製代碼

3.2.2. newproc1

newporc1 的做用就是建立或者獲取一個空間的g,初始化這個g,並嘗試尋找一個p和m去執行g

func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
	_g_ := getg()

	if fn == nil {
		_g_.m.throwing = -1 // do not dump full stacks
		throw("go of nil func value")
	}
	// 加鎖禁止被搶佔
	_g_.m.locks++ // disable preemption because it can be holding p in a local var
	siz := narg
	siz = (siz + 7) &^ 7

	// We could allocate a larger initial stack if necessary.
	// Not worth it: this is almost always an error.
	// 4*sizeof(uintreg): extra space added below
	// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
	// 若是參數過多,則直接拋出異常,棧大小是2k
	if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
		throw("newproc: function arguments too large for new goroutine")
	}

	_p_ := _g_.m.p.ptr()
	// 嘗試獲取一個空閒的g,若是獲取不到,則新建一個,並添加到allg裏面
	// gfget首先會嘗試從p本地獲取空閒的g,若是本地沒有的話,則從全局獲取一堆平衡到本地p
	newg := gfget(_p_)
	if newg == nil {
		newg = malg(_StackMin)
		casgstatus(newg, _Gidle, _Gdead)
		// 新建的g,添加到全局的 allg裏面,allg是一個slice, append進去便可
		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
	}
	// 判斷獲取的g的棧是否正常
	if newg.stack.hi == 0 {
		throw("newproc1: newg missing stack")
	}
	// 判斷g的狀態是否正常
	if readgstatus(newg) != _Gdead {
		throw("newproc1: new g is not Gdead")
	}
	// 預留一點空間,防止讀取超出一點點
	totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
	// 空間大小進行對齊
	totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
	sp := newg.stack.hi - totalSize
	spArg := sp
	// usesLr 爲0,這裏不執行
	if usesLR {
		// caller's LR
		*(*uintptr)(unsafe.Pointer(sp)) = 0
		prepGoExitFrame(sp)
		spArg += sys.MinFrameSize
	}
	if narg > 0 {
		// 將參數拷貝入棧
		memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
		// ... 省略 ...
	}
	// 初始化用於保存現場的區域及初始化基本狀態
	memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
	newg.sched.sp = sp
	newg.stktopsp = sp
	// 這裏保存了goexit的地址,在用戶函數執行完成後,會根據pc來執行goexit
	newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
	newg.sched.g = guintptr(unsafe.Pointer(newg))
	// 這裏調整 sched 信息,pc = goexit的地址
	gostartcallfn(&newg.sched, fn)
	newg.gopc = callerpc
	newg.ancestors = saveAncestors(callergp)
	newg.startpc = fn.fn
	if _g_.m.curg != nil {
		newg.labels = _g_.m.curg.labels
	}
	if isSystemGoroutine(newg) {
		atomic.Xadd(&sched.ngsys, +1)
	}
	newg.gcscanvalid = false
	casgstatus(newg, _Gdead, _Grunnable)
	// 若是p緩存的goid已經用完,本地再從sched批量獲取一點
	if _p_.goidcache == _p_.goidcacheend {
		// Sched.goidgen is the last allocated id,
		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
		// At startup sched.goidgen=0, so main goroutine receives goid=1.
		_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
		_p_.goidcache -= _GoidCacheBatch - 1
		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
	}
	// 分配goid
	newg.goid = int64(_p_.goidcache)
	_p_.goidcache++
	// 把新的g放到 p 的可運行g隊列中
	runqput(_p_, newg, true)
	// 判斷是否有空閒p,且是否須要喚醒一個m來執行g
	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
		wakep()
	}
	_g_.m.locks--
	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
		_g_.stackguard0 = stackPreempt
	}
}
複製代碼

3.2.2.1. gfget

這個函數的邏輯比較簡單,就是看一下p有沒有空閒的g,沒有則去全局的freeg隊列查找,這裏就涉及了p本地和全局平衡的一個交互了

func gfget(_p_ *p) *g {
retry:
	gp := _p_.gfree
	// 本地的g隊列爲空,且全局隊列不爲空,則從全局隊列一次獲取至多32個下來,若是全局隊列不夠就算了
	if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) {
		lock(&sched.gflock)
		for _p_.gfreecnt < 32 {
			if sched.gfreeStack != nil {
				// Prefer Gs with stacks.
				gp = sched.gfreeStack
				sched.gfreeStack = gp.schedlink.ptr()
			} else if sched.gfreeNoStack != nil {
				gp = sched.gfreeNoStack
				sched.gfreeNoStack = gp.schedlink.ptr()
			} else {
				break
			}
			_p_.gfreecnt++
			sched.ngfree--
			gp.schedlink.set(_p_.gfree)
			_p_.gfree = gp
		}
		// 已經從全局拿了g了,再去從頭開始判斷
		unlock(&sched.gflock)
		goto retry
	}
	// 若是拿到了g,則判斷g是否有棧,沒有棧就分配
	// 棧的分配跟內存分配差很少,首先建立幾個固定大小的棧的數組,而後到指定大小的數組裏面去分配就ok了,過大則直接全局分配
	if gp != nil {
		_p_.gfree = gp.schedlink.ptr()
		_p_.gfreecnt--
		if gp.stack.lo == 0 {
			// Stack was deallocated in gfput. Allocate a new one.
			systemstack(func() {
				gp.stack = stackalloc(_FixedStack)
			})
			gp.stackguard0 = gp.stack.lo + _StackGuard
		} else {
			// ... 省略 ...
		}
	}
	// 注意: 若是全局沒有g,p也沒有g,則返回的gp仍是nil
	return gp
}
複製代碼

3.2.2.2. runqput

runqput會把g放到p的本地隊列或者p.runnext,若是p的本地隊列過長,則把g到全局隊列,同時平衡p本地隊列的一半到全局

func runqput(_p_ *p, gp *g, next bool) {
	if randomizeScheduler && next && fastrand()%2 == 0 {
		next = false
	}
	// 若是next爲true,則放入到p.runnext裏面,並把原先runnext的g交換出來
	if next {
	retryNext:
		oldnext := _p_.runnext
		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
			goto retryNext
		}
		if oldnext == 0 {
			return
		}
		// Kick the old runnext out to the regular run queue.
		gp = oldnext.ptr()
	}

retry:
	h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
	t := _p_.runqtail
	// 判斷p的隊列的長度是否超了, runq是一個長度爲256的數組,超出的話就會放到全局隊列了
	if t-h < uint32(len(_p_.runq)) {
		_p_.runq[t%uint32(len(_p_.runq))].set(gp)
		atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
		return
	}
	// 把g放到全局隊列
	if runqputslow(_p_, gp, h, t) {
		return
	}
	// the queue is not full, now the put above must succeed
	goto retry
}
複製代碼

3.2.2.3. runqputslow

func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
	var batch [len(_p_.runq)/2 + 1]*g

	// First, grab a batch from local queue.
	n := t - h
	n = n / 2
	if n != uint32(len(_p_.runq)/2) {
		throw("runqputslow: queue is not full")
	}
	// 獲取p後面的一半
	for i := uint32(0); i < n; i++ {
		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
	}
	if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
		return false
	}
	batch[n] = gp

	// Link the goroutines.
	for i := uint32(0); i < n; i++ {
		batch[i].schedlink.set(batch[i+1])
	}

	// Now put the batch on global queue.
	// 放到全局隊列隊尾
	lock(&sched.lock)
	globrunqputbatch(batch[0], batch[n], int32(n+1))
	unlock(&sched.lock)
	return true
}
複製代碼

新建任務至此基本結束,建立完成任務後,等待調度執行就行了,從上面能夠看出,任務的優先級是 p.runnext > p.runq > sched.runq

g從建立到執行結束並放入free隊列中的狀態轉換大體以下圖所示

3.2.3 wakep

當 newproc1建立完任務後,會嘗試喚醒m來執行任務

func wakep() {
	// be conservative about spinning threads
	// 一次應該只有一個m在spining,不然就退出
	if !atomic.Cas(&sched.nmspinning, 0, 1) {
		return
	}
	// 調用startm來執行
	startm(nil, true)
}
複製代碼

3.2.4 startm

調度m或者建立m來運行p,若是p==nil,就會嘗試獲取一個空閒p,p的隊列中有g,拿到p後才能拿到g

func startm(_p_ *p, spinning bool) {
	lock(&sched.lock)
	if _p_ == nil {
		// 若是沒有指定p, 則從sched.pidle獲取空閒的p
		_p_ = pidleget()
		if _p_ == nil {
			unlock(&sched.lock)
			// 若是沒有獲取到p,重置nmspinning
			if spinning {
				// The caller incremented nmspinning, but there are no idle Ps,
				// so it's okay to just undo the increment and give up.
				if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
					throw("startm: negative nmspinning")
				}
			}
			return
		}
	}
	// 首先嚐試從 sched.midle獲取一個空閒的m
	mp := mget()
	unlock(&sched.lock)
	if mp == nil {
		// 若是獲取不到空閒的m,則建立一個 mspining = true的m,並將p綁定到m上,直接返回
		var fn func() if spinning {
			// The caller incremented nmspinning, so set m.spinning in the new M.
			fn = mspinning
		}
		newm(fn, _p_)
		return
	}
	// 判斷獲取到的空閒m是不是spining狀態
	if mp.spinning {
		throw("startm: m is spinning")
	}
	// 判斷獲取到的m是否有p
	if mp.nextp != 0 {
		throw("startm: m has p")
	}
	if spinning && !runqempty(_p_) {
		throw("startm: p has runnable gs")
	}
	// The caller incremented nmspinning, so set m.spinning in the new M.
	// 調用函數的父函數已經增長了nmspinning, 這裏只須要設置m.spining就ok了,同時把p綁上來
	mp.spinning = spinning
	mp.nextp.set(_p_)
	// 喚醒m
	notewakeup(&mp.park)
}
複製代碼

3.2.4.1. newm

newm 經過allocm函數來建立新m

func newm(fn func(), _p_ *p) {
	// 新建一個m
	mp := allocm(_p_, fn)
	// 爲這個新建的m綁定指定的p
	mp.nextp.set(_p_)
	// ... 省略 ...
	// 建立系統線程
	newm1(mp)
}
複製代碼

3.2.4.2. new1m

func newm1(mp *m) {
	// runtime cgo包會把iscgo設置爲true,這裏不分析
	if iscgo {
		var ts cgothreadstart
		if _cgo_thread_start == nil {
			throw("_cgo_thread_start missing")
		}
		ts.g.set(mp.g0)
		ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
		ts.fn = unsafe.Pointer(funcPC(mstart))
		if msanenabled {
			msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
		}
		execLock.rlock() // Prevent process clone.
		asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
		execLock.runlock()
		return
	}
	execLock.rlock() // Prevent process clone.
	newosproc(mp)
	execLock.runlock()
}
複製代碼

3.2.4.3. newosproc

newosproc 建立一個新的系統線程,並執行mstart_stub函數,以後調用mstart函數進入調度,後面在執行流程會分析

func newosproc(mp *m) {
	stk := unsafe.Pointer(mp.g0.stack.hi)
	// Initialize an attribute object.
	var attr pthreadattr
	var err int32
	err = pthread_attr_init(&attr)

	// Finally, create the thread. It starts at mstart_stub, which does some low-level
	// setup and then calls mstart.
	var oset sigset
	sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
	// 建立線程,並傳入啓動啓動函數 mstart_stub, mstart_stub 以後調用mstart
	err = pthread_create(&attr, funcPC(mstart_stub), unsafe.Pointer(mp))
	sigprocmask(_SIG_SETMASK, &oset, nil)
	if err != 0 {
		write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
		exit(1)
	}
}
複製代碼

3.2.4.4. allocm

allocm這裏首先會釋放 sched的freem,而後再去建立m,並初始化m

func allocm(_p_ *p, fn func()) *m {
	_g_ := getg()
	_g_.m.locks++ // disable GC because it can be called from sysmon
	if _g_.m.p == 0 {
		acquirep(_p_) // temporarily borrow p for mallocs in this function
	}

	// Release the free M list. We need to do this somewhere and
	// this may free up a stack we can use.
	// 首先釋放掉freem列表
	if sched.freem != nil {
		lock(&sched.lock)
		var newList *m
		for freem := sched.freem; freem != nil; {
			if freem.freeWait != 0 {
				next := freem.freelink
				freem.freelink = newList
				newList = freem
				freem = next
				continue
			}
			stackfree(freem.g0.stack)
			freem = freem.freelink
		}
		sched.freem = newList
		unlock(&sched.lock)
	}

	mp := new(m)
	// 啓動函數,根據startm調用來看,這個fn就是 mspinning, 會將m.mspinning設置爲true
	mp.mstartfn = fn
	// 初始化m,上面已經分析了
	mcommoninit(mp)
	// In case of cgo or Solaris or Darwin, pthread_create will make us a stack.
	// Windows and Plan 9 will layout sched stack on OS stack.
	// 爲新的m建立g0
	if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" || GOOS == "darwin" {
		mp.g0 = malg(-1)
	} else {
		mp.g0 = malg(8192 * sys.StackGuardMultiplier)
	}
	// 爲mp的g0綁定本身
	mp.g0.m = mp
	// 若是當前的m所綁定的是參數傳遞過來的p,解除綁定,由於參數傳遞過來的p稍後要綁定新建的m
	if _p_ == _g_.m.p.ptr() {
		releasep()
	}

	_g_.m.locks--
	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
		_g_.stackguard0 = stackPreempt
	}

	return mp
}
複製代碼

3.2.4.5. notewakeup

func notewakeup(n *note) {
	var v uintptr
	// 設置m 爲locked
	for {
		v = atomic.Loaduintptr(&n.key)
		if atomic.Casuintptr(&n.key, v, locked) {
			break
		}
	}

	// Successfully set waitm to locked.
	// What was it before?
	// 根據m的原先的狀態,來判斷後面的執行流程,0則直接返回,locked則衝突,不然認爲是wating,喚醒
	switch {
	case v == 0:
		// Nothing was waiting. Done.
	case v == locked:
		// Two notewakeups! Not allowed.
		throw("notewakeup - double wakeup")
	default:
		// Must be the waiting m. Wake it up.
		// 喚醒系統線程
		semawakeup((*m)(unsafe.Pointer(v)))
	}
}
複製代碼

至此的話,建立完任務g後,將g放入了p的local隊列或者是全局隊列,而後開始獲取了一個空閒的m或者新建一個m來執行g,m, p, g 都已經準備完成了,下面就是開始調度,來運行任務g了

3.3. 執行

在startm函數分析的過程當中會,能夠看到,有兩種獲取m的方式

  • 新建: 這時候執行newm1下的newosproc,同時最終調用mstart來執行調度
  • 喚醒空閒m:從休眠的地方繼續執行

m執行g有兩個起點,一個是線程啓動函數 mstart, 另外一個則是休眠被喚醒後的調度schedule了,咱們從頭開始,也就是mstartmstart 走到最後也是 schedule 調度

3.3.1. mstart

func mstart() {
	_g_ := getg()

	osStack := _g_.stack.lo == 0
	if osStack {
		// Initialize stack bounds from system stack.
		// Cgo may have left stack size in stack.hi.
		// minit may update the stack bounds.
		// 從系統堆棧上直接劃出所需的範圍
		size := _g_.stack.hi
		if size == 0 {
			size = 8192 * sys.StackGuardMultiplier
		}
		_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
		_g_.stack.lo = _g_.stack.hi - size + 1024
	}
	// Initialize stack guards so that we can start calling
	// both Go and C functions with stack growth prologues.
	_g_.stackguard0 = _g_.stack.lo + _StackGuard
	_g_.stackguard1 = _g_.stackguard0
	// 調用mstart1來處理
	mstart1()

	// Exit this thread.
	if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" || GOOS == "darwin" {
		// Window, Solaris, Darwin and Plan 9 always system-allocate
		// the stack, but put it in _g_.stack before mstart,
		// so the logic above hasn't set osStack yet.
		osStack = true
	}
	// 退出m,正常狀況下mstart1調用schedule() 時,是再也不返回的,因此,不用擔憂系統線程的頻繁建立退出
	mexit(osStack)
}
複製代碼

3.3.2. mstart1

func mstart1() {
	_g_ := getg()

	if _g_ != _g_.m.g0 {
		throw("bad runtime·mstart")
	}

	// Record the caller for use as the top of stack in mcall and
	// for terminating the thread.
	// We're never coming back to mstart1 after we call schedule,
	// so other calls can reuse the current frame.
	// 保存調用者的pc sp等信息
	save(getcallerpc(), getcallersp())
	asminit()
	// 初始化m的sigal的棧和mask
	minit()

	// Install signal handlers; after minit so that minit can
	// prepare the thread to be able to handle the signals.
	// 安裝sigal處理器
	if _g_.m == &m0 {
		mstartm0()
	}
	// 若是設置了mstartfn,就先執行這個
	if fn := _g_.m.mstartfn; fn != nil {
		fn()
	}

	if _g_.m.helpgc != 0 {
		_g_.m.helpgc = 0
		stopm()
	} else if _g_.m != &m0 {
		// 獲取nextp
		acquirep(_g_.m.nextp.ptr())
		_g_.m.nextp = 0
	}
	schedule()
}
複製代碼

3.3.2.1. acquirep

acquirep 函數主要是改變p的狀態,綁定 m p,經過吧p的mcache與m共享

func acquirep(_p_ *p) {
	// Do the part that isn't allowed to have write barriers.
	acquirep1(_p_)

	// have p; write barriers now allowed
	_g_ := getg()
	// 把p的mcache與m共享
	_g_.m.mcache = _p_.mcache
}
複製代碼

3.3.2.2. acquirep1

func acquirep1(_p_ *p) {
	_g_ := getg()

	// 讓m p互相綁定
	_g_.m.p.set(_p_)
	_p_.m.set(_g_.m)
	_p_.status = _Prunning
}
複製代碼

3.3.2.3. schedule

開始進入到調度函數了,這是一個由schedule、execute、goroutine fn、goexit構成的邏輯循環,就算m是喚醒後,也是從設置的斷點開始執行

func schedule() {
	_g_ := getg()

	if _g_.m.locks != 0 {
		throw("schedule: holding locks")
	}
	// 若是有lockg,中止執行當前的m
	if _g_.m.lockedg != 0 {
		// 解除lockedm的鎖定,並執行當前g
		stoplockedm()
		execute(_g_.m.lockedg.ptr(), false) // Never returns.
	}

	// We should not schedule away from a g that is executing a cgo call,
	// since the cgo call is using the m's g0 stack.
	if _g_.m.incgo {
		throw("schedule: in cgo")
	}

top:
	// gc 等待
	if sched.gcwaiting != 0 {
		gcstopm()
		goto top
	}

	var gp *g
	var inheritTime bool

	if gp == nil {
		// Check the global runnable queue once in a while to ensure fairness.
		// Otherwise two goroutines can completely occupy the local runqueue
		// by constantly respawning each other.
		// 爲了保證公平,每隔61次,從全局隊列上獲取g
		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
			lock(&sched.lock)
			gp = globrunqget(_g_.m.p.ptr(), 1)
			unlock(&sched.lock)
		}
	}
	if gp == nil {
		// 全局隊列上獲取不到待運行的g,則從p local隊列中獲取
		gp, inheritTime = runqget(_g_.m.p.ptr())
		if gp != nil && _g_.m.spinning {
			throw("schedule: spinning with local work")
		}
	}
	if gp == nil {
		// 若是p local獲取不到待運行g,則開始查找,這個函數會從 全局 io poll, p locl和其餘p local獲取待運行的g,後面詳細分析
		gp, inheritTime = findrunnable() // blocks until work is available
	}

	// This thread is going to run a goroutine and is not spinning anymore,
	// so if it was marked as spinning we need to reset it now and potentially
	// start a new spinning M.
	if _g_.m.spinning {
		// 若是m是自旋狀態,取消自旋
		resetspinning()
	}

	if gp.lockedm != 0 {
		// Hands off own p to the locked m,
		// then blocks waiting for a new p.
		// 若是g有lockedm,則休眠上交p,休眠m,等待新的m,喚醒後從這裏開始執行,跳轉到top
		startlockedm(gp)
		goto top
	}
	// 開始執行這個g
	execute(gp, inheritTime)
}
複製代碼
3.3.2.3.1. stoplockedm

由於當前的m綁定了lockedg,而當前g不是指定的lockedg,因此這個m不能執行,上交當前m綁定的p,而且休眠m直到調度lockedg

func stoplockedm() {
	_g_ := getg()

	if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
		throw("stoplockedm: inconsistent locking")
	}
	if _g_.m.p != 0 {
		// Schedule another M to run this p.
		// 釋放當前p
		_p_ := releasep()
		handoffp(_p_)
	}
	incidlelocked(1)
	// Wait until another thread schedules lockedg again.
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	status := readgstatus(_g_.m.lockedg.ptr())
	if status&^_Gscan != _Grunnable {
		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
		dumpgstatus(_g_)
		throw("stoplockedm: not runnable")
	}
	// 上交了當前的p,將nextp設置爲可執行的p
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}
複製代碼
3.3.2.3.2. startlockedm

調度 lockedm去運行lockedg

func startlockedm(gp *g) {
	_g_ := getg()

	mp := gp.lockedm.ptr()
	if mp == _g_.m {
		throw("startlockedm: locked to me")
	}
	if mp.nextp != 0 {
		throw("startlockedm: m has p")
	}
	// directly handoff current P to the locked m
	incidlelocked(-1)
	// 移交當前p給lockedm,並設置爲lockedm.nextp,以便於lockedm喚醒後,能夠獲取
	_p_ := releasep()
	mp.nextp.set(_p_)
	// m被喚醒後,從m休眠的地方開始執行,也就是schedule()函數中
	notewakeup(&mp.park)
	stopm()
}
複製代碼
3.3.2.3.3. handoffp
func handoffp(_p_ *p) {
	// handoffp must start an M in any situation where
	// findrunnable would return a G to run on _p_.

	// if it has local work, start it straight away
	if !runqempty(_p_) || sched.runqsize != 0 {
		// 調用startm開始調度
		startm(_p_, false)
		return
	}

	// no local work, check that there are no spinning/idle M's,
	// otherwise our help is not required
	// 判斷有沒有正在尋找p的m以及有沒有空閒的p
	if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
		startm(_p_, true)
		return
	}
	lock(&sched.lock)

	if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
		sched.safePointFn(_p_)
		sched.safePointWait--
		if sched.safePointWait == 0 {
			notewakeup(&sched.safePointNote)
		}
	}
	// 若是 全局待運行g隊列不爲空,嘗試使用startm進行調度
	if sched.runqsize != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	// If this is the last running P and nobody is polling network,
	// need to wakeup another M to poll network.
	if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	// 把p放入到全局的空閒隊列,放回隊列就很少說了,參考allm的放回
	pidleput(_p_)
	unlock(&sched.lock)
}
複製代碼
3.3.2.3.4. execute

開始執行g的代碼了

func execute(gp *g, inheritTime bool) {
	_g_ := getg()
	// 更改g的狀態,並不容許搶佔
	casgstatus(gp, _Grunnable, _Grunning)
	gp.waitsince = 0
	gp.preempt = false
	gp.stackguard0 = gp.stack.lo + _StackGuard
	if !inheritTime {
		// 調度計數
		_g_.m.p.ptr().schedtick++
	}
	_g_.m.curg = gp
	gp.m = _g_.m
	// 開始執行g的代碼了
	gogo(&gp.sched)
}
複製代碼
3.3.2.3.5. gogo

gogo函數承載的做用就是切換到g的棧,開始執行g的代碼,彙編內容就不分析了,可是有一個疑問就是,gogo執行完函數後,怎麼再次進入調度呢?

咱們回到newproc1函數的L63 newg.sched.pc = funcPC(goexit) + sys.PCQuantum ,這裏保存了pc的質地爲goexit的地址,因此當執行完用戶代碼後,就會進入 goexit 函數

3.3.2.3.6. goexit0

goexit 在彙編層面就是調用 runtime.goexit1,而goexit1經過 mcall 調用了goexit0 因此這裏直接分析了goexit0

goexit0 重置g的狀態,並從新進行調度,這樣就調度就又回到了schedule() 了,開始循環往復的調度

func goexit0(gp *g) {
	_g_ := getg()
	// 轉換g的狀態爲dead,以放回空閒列表
	casgstatus(gp, _Grunning, _Gdead)
	if isSystemGoroutine(gp) {
		atomic.Xadd(&sched.ngsys, -1)
	}
	// 清空g的狀態
	gp.m = nil
	locked := gp.lockedm != 0
	gp.lockedm = 0
	_g_.m.lockedg = 0
	gp.paniconfault = false
	gp._defer = nil // should be true already but just in case.
	gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
	gp.writebuf = nil
	gp.waitreason = 0
	gp.param = nil
	gp.labels = nil
	gp.timer = nil

	// Note that gp's stack scan is now "valid" because it has no
	// stack.
	gp.gcscanvalid = true
	dropg()

	// 把g放回空閒列表,以備複用
	gfput(_g_.m.p.ptr(), gp)
	// 再次進入調度循環
	schedule()
}
複製代碼

至此,單次調度結束,再次進入調度,循環往復

3.3.2.3.7. findrunnable
func findrunnable() (gp *g, inheritTime bool) {
	_g_ := getg()

	// The conditions here and in handoffp must agree: if
	// findrunnable would return a G to run, handoffp must start
	// an M.

top:
	_p_ := _g_.m.p.ptr()

	// local runq
	// 從p local 去獲取g
	if gp, inheritTime := runqget(_p_); gp != nil {
		return gp, inheritTime
	}

	// global runq
	// 從全局的待運行d隊列獲取
	if sched.runqsize != 0 {
		lock(&sched.lock)
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		if gp != nil {
			return gp, false
		}
	}

	// Poll network.
	// This netpoll is only an optimization before we resort to stealing.
	// We can safely skip it if there are no waiters or a thread is blocked
	// in netpoll already. If there is any kind of logical race with that
	// blocked thread (e.g. it has already returned from netpoll, but does
	// not set lastpoll yet), this thread will do blocking netpoll below
	// anyway.
	// 看看netpoll中有沒有已經準備好的g
	if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
		if gp := netpoll(false); gp != nil { // non-blocking
			// netpoll returns list of goroutines linked by schedlink.
			injectglist(gp.schedlink.ptr())
			casgstatus(gp, _Gwaiting, _Grunnable)
			if trace.enabled {
				traceGoUnpark(gp, 0)
			}
			return gp, false
		}
	}

	// Steal work from other P's.
	// 若是sched.pidle == procs - 1,說明全部的p都是空閒的,無需遍歷其餘p了
	procs := uint32(gomaxprocs)
	if atomic.Load(&sched.npidle) == procs-1 {
		// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
		// New work can appear from returning syscall/cgocall, network or timers.
		// Neither of that submits to local run queues, so no point in stealing.
		goto stop
	}
	// If number of spinning M's >= number of busy P's, block.
	// This is necessary to prevent excessive CPU consumption
	// when GOMAXPROCS>>1 but the program parallelism is low.
	// 若是尋找p的m的數量,大於有g的p的數量的通常,就再也不去尋找了
	if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
		goto stop
	}
	// 設置當前m的自旋狀態
	if !_g_.m.spinning {
		_g_.m.spinning = true
		atomic.Xadd(&sched.nmspinning, 1)
	}
	// 開始竊取其餘p的待運行g了
	for i := 0; i < 4; i++ {
		for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
			if sched.gcwaiting != 0 {
				goto top
			}
			stealRunNextG := i > 2 // first look for ready queues with more than 1 g
			// 從其餘的p偷取通常的任務數量,還會隨機偷取p的runnext(過度了),偷取部分就不分析了,就是slice的操做而已
			if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
				return gp, false
			}
		}
	}

stop:
	// 對all作個鏡像備份
	allpSnapshot := allp

	// return P and block
	lock(&sched.lock)

	if sched.runqsize != 0 {
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		return gp, false
	}
	if releasep() != _p_ {
		throw("findrunnable: wrong p")
	}
	pidleput(_p_)
	unlock(&sched.lock)

	wasSpinning := _g_.m.spinning
	if _g_.m.spinning {
		// 設置非自旋狀態,由於找p的工做已經結束了
		_g_.m.spinning = false
		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
			throw("findrunnable: negative nmspinning")
		}
	}

	// check all runqueues once again
	for _, _p_ := range allpSnapshot {
		if !runqempty(_p_) {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				if wasSpinning {
					_g_.m.spinning = true
					atomic.Xadd(&sched.nmspinning, 1)
				}
				goto top
			}
			break
		}
	}
	// poll network
	if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
		if _g_.m.p != 0 {
			throw("findrunnable: netpoll with p")
		}
		if _g_.m.spinning {
			throw("findrunnable: netpoll with spinning")
		}
		gp := netpoll(true) // block until new work is available
		atomic.Store64(&sched.lastpoll, uint64(nanotime()))
		if gp != nil {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				injectglist(gp.schedlink.ptr())
				casgstatus(gp, _Gwaiting, _Grunnable)
				if trace.enabled {
					traceGoUnpark(gp, 0)
				}
				return gp, false
			}
			injectglist(gp)
		}
	}
	stopm()
	goto top
}
複製代碼

這裏真的是無奈啊,爲了尋找一個可運行的g,也是煞費苦心,及時進入了stop 的label,仍是不死心,又來了一邊尋找。大體尋找過程能夠總結爲一下幾個:

  • 從p本身的local隊列中獲取可運行的g
  • 從全局隊列中獲取可運行的g
  • 從netpoll中獲取一個已經準備好的g
  • 從其餘p的local隊列中獲取可運行的g,隨機偷取p的runnext,有點任性
  • 不管如何都獲取不到的話,就stopm了
3.3.2.3.7. stopm

stop會把當前m放到空閒列表裏面,同時綁定m.nextp 與 m

func stopm() {
	_g_ := getg()
retry:
	lock(&sched.lock)
	// 把當前m放到sched.midle 的空閒列表裏
	mput(_g_.m)
	unlock(&sched.lock)
	// 休眠,等待被喚醒
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	// 綁定p
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}
複製代碼

3.4. 監控

3.4.1. sysmon

go的監控是依靠函數 sysmon 來完成的,監控主要作一下幾件事

  • 釋放閒置超過5分鐘的span物理內存
  • 若是超過兩分鐘沒有執行垃圾回收,則強制執行
  • 將長時間未處理的netpoll結果添加到任務隊列
  • 向長時間運行的g進行搶佔
  • 收回由於syscall而長時間阻塞的p

監控線程並非時刻在運行的,監控線程首次休眠20us,每次執行完後,增長一倍的休眠時間,可是最多休眠10ms

func sysmon() {
	lock(&sched.lock)
	sched.nmsys++
	checkdead()
	unlock(&sched.lock)

	// If a heap span goes unused for 5 minutes after a garbage collection,
	// we hand it back to the operating system.
	scavengelimit := int64(5 * 60 * 1e9)

	if debug.scavenge > 0 {
		// Scavenge-a-lot for testing.
		forcegcperiod = 10 * 1e6
		scavengelimit = 20 * 1e6
	}

	lastscavenge := nanotime()
	nscavenge := 0

	lasttrace := int64(0)
	idle := 0 // how many cycles in succession we had not wokeup somebody
	delay := uint32(0)
	for {
		// 判斷當前循環,應該休眠的時間
		if idle == 0 { // start with 20us sleep...
			delay = 20
		} else if idle > 50 { // start doubling the sleep after 1ms...
			delay *= 2
		}
		if delay > 10*1000 { // up to 10ms
			delay = 10 * 1000
		}
		usleep(delay)
		// STW時休眠sysmon
		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
			lock(&sched.lock)
			if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
				atomic.Store(&sched.sysmonwait, 1)
				unlock(&sched.lock)
				// Make wake-up period small enough
				// for the sampling to be correct.
				maxsleep := forcegcperiod / 2
				if scavengelimit < forcegcperiod {
					maxsleep = scavengelimit / 2
				}
				shouldRelax := true
				if osRelaxMinNS > 0 {
					next := timeSleepUntil()
					now := nanotime()
					if next-now < osRelaxMinNS {
						shouldRelax = false
					}
				}
				if shouldRelax {
					osRelax(true)
				}
				// 進行休眠
				notetsleep(&sched.sysmonnote, maxsleep)
				if shouldRelax {
					osRelax(false)
				}
				lock(&sched.lock)
				// 喚醒後,清除休眠狀態,繼續執行
				atomic.Store(&sched.sysmonwait, 0)
				noteclear(&sched.sysmonnote)
				idle = 0
				delay = 20
			}
			unlock(&sched.lock)
		}
		// trigger libc interceptors if needed
		if *cgo_yield != nil {
			asmcgocall(*cgo_yield, nil)
		}
		// poll network if not polled for more than 10ms
		lastpoll := int64(atomic.Load64(&sched.lastpoll))
		now := nanotime()
		// 若是netpoll不爲空,每隔10ms檢查一下是否有ok的
		if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
			atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
			// 返回了已經獲取到結果的goroutine的列表
			gp := netpoll(false) // non-blocking - returns list of goroutines
			if gp != nil {
				incidlelocked(-1)
				// 把獲取到的g的列表加入到全局待運行隊列中
				injectglist(gp)
				incidlelocked(1)
			}
		}
		// retake P's blocked in syscalls
		// and preempt long running G's
		// 搶奪syscall長時間阻塞的p和長時間運行的g
		if retake(now) != 0 {
			idle = 0
		} else {
			idle++
		}
		// check if we need to force a GC
		// 經過gcTrigger.test() 函數判斷是否超過設定的強制觸發gc的時間間隔,
		if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
			lock(&forcegc.lock)
			forcegc.idle = 0
			forcegc.g.schedlink = 0
			// 把gc的g加入待運行隊列,等待調度運行
			injectglist(forcegc.g)
			unlock(&forcegc.lock)
		}
		// scavenge heap once in a while
		// 判斷是否有5分鐘未使用的span,有的話,歸還給系統
		if lastscavenge+scavengelimit/2 < now {
			mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
			lastscavenge = now
			nscavenge++
		}
		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
			lasttrace = now
			schedtrace(debug.scheddetail > 0)
		}
	}
}
複製代碼

掃描netpoll,並把g存放到去全局隊列比較好理解,跟前面添加p和m的邏輯差很少,可是搶佔這裏就不是很理解了,你說搶佔就搶佔,被搶佔的g豈不是很沒面子,並且怎麼搶佔呢?

3.4.2. retake

const forcePreemptNS = 10 * 1000 * 1000 // 10ms

func retake(now int64) uint32 {
	n := 0
	// Prevent allp slice changes. This lock will be completely
	// uncontended unless we're already stopping the world.
	lock(&allpLock)
	// We can't use a range loop over allp because we may
	// temporarily drop the allpLock. Hence, we need to re-fetch
	// allp each time around the loop.
	for i := 0; i < len(allp); i++ {
		_p_ := allp[i]
		if _p_ == nil {
			// This can happen if procresize has grown
			// allp but not yet created new Ps.
			continue
		}
		pd := &_p_.sysmontick
		s := _p_.status
		if s == _Psyscall {
			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
			// pd.syscalltick 即 _p_.sysmontick.syscalltick 只有在sysmon的時候會更新,而 _p_.syscalltick 則會每次都更新,因此,當syscall以後,第一個sysmon檢測到的時候並不會搶佔,而是第二次開始纔會搶佔,中間間隔至少有20us,最多會有10ms
			t := int64(_p_.syscalltick)
			if int64(pd.syscalltick) != t {
				pd.syscalltick = uint32(t)
				pd.syscallwhen = now
				continue
			}
			// On the one hand we don't want to retake Ps if there is no other work to do,
			// but on the other hand we want to retake them eventually
			// because they can prevent the sysmon thread from deep sleep.
			// 是否有空p,有尋找p的m,以及當前的p在syscall以後,有沒有超過10ms
			if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
				continue
			}
			// Drop allpLock so we can take sched.lock.
			unlock(&allpLock)
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1)
			// 搶佔p,把p的狀態轉爲idle狀態
			if atomic.Cas(&_p_.status, s, _Pidle) {
				if trace.enabled {
					traceGoSysBlock(_p_)
					traceProcStop(_p_)
				}
				n++
				_p_.syscalltick++
				// 把當前p移交出去,上面已經分析過了
				handoffp(_p_)
			}
			incidlelocked(1)
			lock(&allpLock)
		} else if s == _Prunning {
			// Preempt G if it's running for too long.
			// 若是p是running狀態,若是p下面的g執行過久了,則搶佔
			t := int64(_p_.schedtick)
			if int64(pd.schedtick) != t {
				pd.schedtick = uint32(t)
				pd.schedwhen = now
				continue
			}
			// 判斷是否超出10ms, 不超過不搶佔
			if pd.schedwhen+forcePreemptNS > now {
				continue
			}
			// 開始搶佔
			preemptone(_p_)
		}
	}
	unlock(&allpLock)
	return uint32(n)
}
複製代碼

3.4.3. preemptone

這個函數的註釋,做者就代表這種搶佔並非很靠譜😂,咱們先看一下實現吧

func preemptone(_p_ *p) bool {
	mp := _p_.m.ptr()
	if mp == nil || mp == getg().m {
		return false
	}
	gp := mp.curg
	if gp == nil || gp == mp.g0 {
		return false
	}
	// 標識搶佔字段
	gp.preempt = true

	// Every call in a go routine checks for stack overflow by
	// comparing the current stack pointer to gp->stackguard0.
	// Setting gp->stackguard0 to StackPreempt folds
	// preemption into the normal stack overflow check.
	// 更新stackguard0,保證能檢測到棧溢
	gp.stackguard0 = stackPreempt
	return true
}
複製代碼

在這裏,做者會更新 gp.stackguard0 = stackPreempt,而後讓g誤覺得棧不夠用了,那就只有乖乖的去進行棧擴張,站擴張的話就用調用newstack 分配一個新棧,而後把原先的棧的內容拷貝過去,而在 newstack 裏面有一段以下

if preempt {
	if thisg.m.locks != 0 || thisg.m.mallocing != 0 || thisg.m.preemptoff != "" || thisg.m.p.ptr().status != _Prunning {
		// Let the goroutine keep running for now.
		// gp->preempt is set, so it will be preempted next time.
		gp.stackguard0 = gp.stack.lo + _StackGuard
		gogo(&gp.sched) // never return
	}
}
複製代碼

而後這裏就發現g被搶佔了,那你棧不夠用就有多是假的,可是管你呢,你再去調度去吧,也不給你擴棧了,雖然做者和雨痕大神都吐槽了一下這個,可是這種搶佔方式自動1.5(也可能更早)就一直存在,且穩定運行,就說明仍是很牛逼的了

4. 總結

在調度器的設置上,最明顯的就是複用:g 的free鏈表, m的free列表, p的free列表,這樣就避免了重複建立銷燬鎖浪費的資源

其次就是多級緩存: 這一塊跟內存上的設計思想也是一直的,p一直有一個 g 的待運行隊列,本身沒有貨過多的時候,纔會平衡到全局隊列,全局隊列操做須要鎖,則本地操做則不須要,大大減小了鎖的建立銷燬所消耗的資源

至此,g m p的關係及狀態轉換大體都講解完成了,因爲對彙編這塊比較薄弱,因此基本略過了,右面有機會仍是須要多瞭解一點

5. 參考文檔

相關文章
相關標籤/搜索