在學習Go的過程當中,最讓人驚歎的莫過於goroutine了。可是goroutine是什麼,咱們用go
關鍵字就能夠建立一個goroutine,這麼多的goroutine之間,是如何調度的呢?html
在看Go源碼的過程當中,遍地可見g、p、m,咱們首先就看一下這些關鍵字的結構及相互之間的關係web
這裏咱們僅列出來告終構體裏面比較關鍵的一些成員bootstrap
goroutine是運行時的最小執行單元segmentfault
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi).
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
// 當前g使用的棧空間,stack結構包括 [lo, hi]兩個成員
stack stack // offset known to runtime/cgo
// 用於檢測是否須要進行棧擴張,go代碼使用
stackguard0 uintptr // offset known to liblink
// 用於檢測是否須要進行棧擴展,原生代碼使用的
stackguard1 uintptr // offset known to liblink
// 當前g所綁定的m
m *m // current m; offset known to arm liblink
// 當前g的調度數據,當goroutine切換時,保存當前g的上下文,用於恢復
sched gobuf
// g當前的狀態
atomicstatus uint32
// 當前g的id
goid int64
// 下一個g的地址,經過guintptr結構體的ptr set函數能夠設置和獲取下一個g,經過這個字段和sched.gfreeStack sched.gfreeNoStack 能夠把 free g串成一個鏈表
schedlink guintptr
// 判斷g是否容許被搶佔
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
// g是否要求要回到這個M執行, 有的時候g中斷了恢復會要求使用原來的M執行
lockedm muintptr
}
複製代碼
P是M運行G所需的資源windows
type p struct {
lock mutex
id int32
// p的狀態,稍後介紹
status uint32 // one of pidle/prunning/...
// 下一個p的地址,可參考 g.schedlink
link puintptr
// p所關聯的m
m muintptr // back-link to associated m (nil if idle)
// 內存分配的時候用的,p所屬的m的mcache用的也是這個
mcache *mcache
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
// 從sched中獲取並緩存的id,避免每次分配goid都從sched分配
goidcache uint64
goidcacheend uint64
// Queue of runnable goroutines. Accessed without lock.
// p 本地的runnbale的goroutine造成的隊列
runqhead uint32
runqtail uint32
runq [256]guintptr
// runnext, if non-nil, is a runnable G that was ready'd by
// the current G and should be run next instead of what's in
// runq if there's time remaining in the running G's time
// slice. It will inherit the time left in the current time
// slice. If a set of goroutines is locked in a
// communicate-and-wait pattern, this schedules that set as a
// unit and eliminates the (potentially large) scheduling
// latency that otherwise arises from adding the ready'd
// goroutines to the end of the run queue.
// 下一個執行的g,若是是nil,則從隊列中獲取下一個執行的g
runnext guintptr
// Available G's (status == Gdead)
// 狀態爲 Gdead的g的列表,能夠進行復用
gfree *g
gfreecnt int32
}
複製代碼
type m struct {
// g0是用於調度和執行系統調用的特殊g
g0 *g // goroutine with scheduling stack
// m當前運行的g
curg *g // current running goroutine
// 當前擁有的p
p puintptr // attached p for executing go code (nil if not executing go code)
// 線程的 local storage
tls [6]uintptr // thread-local storage
// 喚醒m時,m會擁有這個p
nextp puintptr
id int64
// 若是 !="", 繼續運行curg
preemptoff string // if != "", keep curg running on this m
// 自旋狀態,用於判斷m是否工做已結束,並尋找g進行工做
spinning bool // m is out of work and is actively looking for work
// 用於判斷m是否進行休眠狀態
blocked bool // m is blocked on a note
// m休眠和喚醒經過這個,note裏面有一個成員key,對這個key所指向的地址進行值的修改,進而達到喚醒和休眠的目的
park note
// 全部m組成的一個鏈表
alllink *m // on allm
// 下一個m,經過這個字段和sched.midle 能夠串成一個m的空閒鏈表
schedlink muintptr
// mcache,m擁有p的時候,會把本身的mcache給p
mcache *mcache
// lockedm的對應值
lockedg guintptr
// 待釋放的m的list,經過sched.freem 串成一個鏈表
freelink *m // on sched.freem
}
複製代碼
type schedt struct {
// 全局的go id分配
goidgen uint64
// 記錄的最後一次從i/o中查詢g的時間
lastpoll uint64
lock mutex
// When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be
// sure to call checkdead().
// m的空閒鏈表,結合m.schedlink 就能夠組成一個空閒鏈表了
midle muintptr // idle m's waiting for work
nmidle int32 // number of idle m's waiting for work
nmidlelocked int32 // number of locked m's waiting for work
// 下一個m的id,也用來記錄建立的m數量
mnext int64 // number of m's that have been created and next M ID
// 最多容許的m的數量
maxmcount int32 // maximum number of m's allowed (or die)
nmsys int32 // number of system m's not counted for deadlock
// free掉的m的數量,exit的m的數量
nmfreed int64 // cumulative number of freed m's
ngsys uint32 // number of system goroutines; updated atomically
pidle puintptr // idle p's
npidle uint32
nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go.
// Global runnable queue.
// 這個就是全局的g的隊列了,若是p的本地隊列沒有g或者太多,會跟全局隊列進行平衡
// 根據runqhead能夠獲取隊列頭的g,而後根據g.schedlink 獲取下一個,從而造成了一個鏈表
runqhead guintptr
runqtail guintptr
runqsize int32
// freem is the list of m's waiting to be freed when their
// m.exited is set. Linked through m.freelink.
// 等待釋放的m的列表
freem *m
}
複製代碼
在這裏插一下狀態的解析數組
m的status沒有p、g的那麼明確,可是在運行流程的分析中,主要有如下幾個狀態緩存
在上面的結構中,存在不少的鏈表,g m p結構中還有指向對方地址的成員,那麼他們的關係究竟是什麼樣的數據結構
咱們能夠從上圖,簡單的表述一下 m p g的關係app
從下圖,能夠簡單的一窺go的整個調度流程的大概less
接下來咱們就從源碼的角度來具體的分析整個調度流程(本人彙編不照,彙編方面的就不分析了🤪)
go的啓動流程分爲4步
其中,schedinit 就是調度器的初始化,出去schedinit 中對內存分配,垃圾回收等操做,針對調度器的初始化大體就是初始化自身,設置最大的maxmcount, 肯定p的數量並初始化這些操做
schedinit這裏對當前m進行了初始化,並根據osinit獲取到的cpu核數和設置的GOMAXPROCS
肯定p的數量,並進行初始化
func schedinit() {
// 從TLS或者專用寄存器獲取當前g的指針類型
_g_ := getg()
// 設置m最大的數量
sched.maxmcount = 10000
// 初始化棧的複用空間
stackinit()
// 初始化當前m
mcommoninit(_g_.m)
// osinit的時候會設置 ncpu這個全局變量,這裏就是根據cpu核心數和參數GOMAXPROCS來肯定p的數量
procs := ncpu
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
procs = n
}
// 生成設定數量的p
if procresize(procs) != nil {
throw("unknown runnable goroutine during bootstrap")
}
}
複製代碼
func mcommoninit(mp *m) {
_g_ := getg()
lock(&sched.lock)
// 判斷mnext的值是否溢出,mnext須要賦值給m.id
if sched.mnext+1 < sched.mnext {
throw("runtime: thread ID overflow")
}
mp.id = sched.mnext
sched.mnext++
// 判斷m的數量是否比maxmcount設定的要多,若是超出直接報異常
checkmcount()
// 建立一個新的g用於處理signal,並分配棧
mpreinit(mp)
if mp.gsignal != nil {
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
}
// Add to allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
// 接下來的兩行,首先將當前m放到allm的頭,而後原子操做,將當前m的地址,賦值給m,這樣就將當前m添加到了allm鏈表的頭了
mp.alllink = allm
// NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
unlock(&sched.lock)
// Allocate memory to hold a cgo traceback if the cgo call crashes.
if iscgo || GOOS == "solaris" || GOOS == "windows" {
mp.cgoCallers = new(cgoCallers)
}
}
複製代碼
在這裏就開始涉及到了m鏈表了,這個鏈表能夠以下圖表示,其餘的p g鏈表能夠參考,只是使用的結構體的字段不同
更改p的數量,多退少補的原則,在初始化過程當中,因爲最開始是沒有p的,因此這裏的做用就是初始化設定數量的p了
procesize
不只在初始化的時候會調用,當用戶手動調用 runtime.GOMAXPROCS
的時候,會從新設定 nprocs,而後執行 startTheWorld()
, startTheWorld()
會是使用新的 nprocs 再次調用procresize
這個方法
func procresize(nprocs int32) *p {
old := gomaxprocs
if old < 0 || nprocs <= 0 {
throw("procresize: invalid arg")
}
// update statistics
now := nanotime()
if sched.procresizetime != 0 {
sched.totaltime += int64(old) * (now - sched.procresizetime)
}
sched.procresizetime = now
// Grow allp if necessary.
// 若是新給的p的數量比原先的p的數量多,則新建增加的p
if nprocs > int32(len(allp)) {
// Synchronize with retake, which could be running
// concurrently since it doesn't run on a P.
lock(&allpLock)
// 判斷allp 的cap是否知足增加後的長度,知足就直接使用,不知足,則須要擴張這個slice
if nprocs <= int32(cap(allp)) {
allp = allp[:nprocs]
} else {
nallp := make([]*p, nprocs)
// Copy everything up to allp's cap so we
// never lose old allocated Ps.
copy(nallp, allp[:cap(allp)])
allp = nallp
}
unlock(&allpLock)
}
// initialize new P's
// 初始化新增的p
for i := int32(0); i < nprocs; i++ {
pp := allp[i]
if pp == nil {
pp = new(p)
pp.id = i
pp.status = _Pgcstop
pp.sudogcache = pp.sudogbuf[:0]
for i := range pp.deferpool {
pp.deferpool[i] = pp.deferpoolbuf[i][:0]
}
pp.wbBuf.reset()
// allp是一個slice,直接將新增的p放到對應的索引下面就ok了
atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
}
if pp.mcache == nil {
// 初始化時,old=0,第一個新建的p給當前的m使用
if old == 0 && i == 0 {
if getg().m.mcache == nil {
throw("missing mcache?")
}
pp.mcache = getg().m.mcache // bootstrap
} else {
// 爲p分配內存
pp.mcache = allocmcache()
}
}
}
// free unused P's
// 釋放掉多餘的p,當新設置的p的數量,比原先設定的p的數量少的時候,會走到這個流程
// 經過 runtime.GOMAXPROCS 就能夠動態的修改nprocs
for i := nprocs; i < old; i++ {
p := allp[i]
// move all runnable goroutines to the global queue
// 把當前p的運行隊列裏的g轉移到全局的g的隊列
for p.runqhead != p.runqtail {
// pop from tail of local queue
p.runqtail--
gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
// push onto head of global queue
globrunqputhead(gp)
}
// 把runnext裏的g也轉移到全局隊列
if p.runnext != 0 {
globrunqputhead(p.runnext.ptr())
p.runnext = 0
}
// if there's a background worker, make it runnable and put
// it on the global queue so it can clean itself up
// 若是有gc worker的話,修改g的狀態,而後再把它放到全局隊列中
if gp := p.gcBgMarkWorker.ptr(); gp != nil {
casgstatus(gp, _Gwaiting, _Grunnable)
globrunqput(gp)
// This assignment doesn't race because the
// world is stopped.
p.gcBgMarkWorker.set(nil)
}
// sudoig的buf和cache,以及deferpool所有清空
for i := range p.sudogbuf {
p.sudogbuf[i] = nil
}
p.sudogcache = p.sudogbuf[:0]
for i := range p.deferpool {
for j := range p.deferpoolbuf[i] {
p.deferpoolbuf[i][j] = nil
}
p.deferpool[i] = p.deferpoolbuf[i][:0]
}
// 釋放掉當前p的mcache
freemcache(p.mcache)
p.mcache = nil
// 把當前p的gfree轉移到全局
gfpurge(p)
// 修改p的狀態,讓他自生自滅去了
p.status = _Pdead
// can't free P itself because it can be referenced by an M in syscall
}
// Trim allp.
if int32(len(allp)) != nprocs {
lock(&allpLock)
allp = allp[:nprocs]
unlock(&allpLock)
}
// 判斷當前g是否有p,有的話更改當前使用的p的狀態,繼續使用
_g_ := getg()
if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
// continue to use the current P
_g_.m.p.ptr().status = _Prunning
} else {
// release the current P and acquire allp[0]
// 若是當前g有p,可是擁有的是已經釋放的p,則再也不使用這個p,從新分配
if _g_.m.p != 0 {
_g_.m.p.ptr().m = 0
}
// 分配allp[0]給當前g使用
_g_.m.p = 0
_g_.m.mcache = nil
p := allp[0]
p.m = 0
p.status = _Pidle
// 將p m g綁定,並把m.mcache指向p.mcache,並修改p的狀態爲_Prunning
acquirep(p)
}
var runnablePs *p
for i := nprocs - 1; i >= 0; i-- {
p := allp[i]
if _g_.m.p.ptr() == p {
continue
}
p.status = _Pidle
// 根據 runqempty 來判斷當前p的g運行隊列是否爲空
if runqempty(p) {
// g運行隊列爲空的p,放到 sched的pidle隊列裏面
pidleput(p)
} else {
// g 運行隊列不爲空的p,組成一個可運行隊列,並最後返回
p.m.set(mget())
p.link.set(runnablePs)
runnablePs = p
}
}
stealOrder.reset(uint32(nprocs))
var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
return runnablePs
}
複製代碼
建立一個goroutine,只須要使用 go func
就能夠了,編譯器會將go func
翻譯成 newproc
進行調用,那麼新建的任務是如何調用的呢,咱們從建立開始進行跟蹤
newproc
函數獲取了參數和當前g的pc信息,並經過g0調用newproc1
去真正的執行建立或獲取可用的g
func newproc(siz int32, fn *funcval) {
// 獲取第一參數地址
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
// 獲取當前執行的g
gp := getg()
// 獲取當前g的pc
pc := getcallerpc()
systemstack(func() {
// 使用g0去執行newproc1函數
newproc1(fn, (*uint8)(argp), siz, gp, pc)
})
}
複製代碼
newporc1 的做用就是建立或者獲取一個空間的g,初始化這個g,並嘗試尋找一個p和m去執行g
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
_g_ := getg()
if fn == nil {
_g_.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
// 加鎖禁止被搶佔
_g_.m.locks++ // disable preemption because it can be holding p in a local var
siz := narg
siz = (siz + 7) &^ 7
// We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
// 若是參數過多,則直接拋出異常,棧大小是2k
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
}
_p_ := _g_.m.p.ptr()
// 嘗試獲取一個空閒的g,若是獲取不到,則新建一個,並添加到allg裏面
// gfget首先會嘗試從p本地獲取空閒的g,若是本地沒有的話,則從全局獲取一堆平衡到本地p
newg := gfget(_p_)
if newg == nil {
newg = malg(_StackMin)
casgstatus(newg, _Gidle, _Gdead)
// 新建的g,添加到全局的 allg裏面,allg是一個slice, append進去便可
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
// 判斷獲取的g的棧是否正常
if newg.stack.hi == 0 {
throw("newproc1: newg missing stack")
}
// 判斷g的狀態是否正常
if readgstatus(newg) != _Gdead {
throw("newproc1: new g is not Gdead")
}
// 預留一點空間,防止讀取超出一點點
totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
// 空間大小進行對齊
totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
sp := newg.stack.hi - totalSize
spArg := sp
// usesLr 爲0,這裏不執行
if usesLR {
// caller's LR
*(*uintptr)(unsafe.Pointer(sp)) = 0
prepGoExitFrame(sp)
spArg += sys.MinFrameSize
}
if narg > 0 {
// 將參數拷貝入棧
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
// ... 省略 ...
}
// 初始化用於保存現場的區域及初始化基本狀態
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
// 這裏保存了goexit的地址,在用戶函數執行完成後,會根據pc來執行goexit
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
// 這裏調整 sched 信息,pc = goexit的地址
gostartcallfn(&newg.sched, fn)
newg.gopc = callerpc
newg.ancestors = saveAncestors(callergp)
newg.startpc = fn.fn
if _g_.m.curg != nil {
newg.labels = _g_.m.curg.labels
}
if isSystemGoroutine(newg) {
atomic.Xadd(&sched.ngsys, +1)
}
newg.gcscanvalid = false
casgstatus(newg, _Gdead, _Grunnable)
// 若是p緩存的goid已經用完,本地再從sched批量獲取一點
if _p_.goidcache == _p_.goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
_p_.goidcache -= _GoidCacheBatch - 1
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
}
// 分配goid
newg.goid = int64(_p_.goidcache)
_p_.goidcache++
// 把新的g放到 p 的可運行g隊列中
runqput(_p_, newg, true)
// 判斷是否有空閒p,且是否須要喚醒一個m來執行g
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
複製代碼
這個函數的邏輯比較簡單,就是看一下p有沒有空閒的g,沒有則去全局的freeg隊列查找,這裏就涉及了p本地和全局平衡的一個交互了
func gfget(_p_ *p) *g {
retry:
gp := _p_.gfree
// 本地的g隊列爲空,且全局隊列不爲空,則從全局隊列一次獲取至多32個下來,若是全局隊列不夠就算了
if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) {
lock(&sched.gflock)
for _p_.gfreecnt < 32 {
if sched.gfreeStack != nil {
// Prefer Gs with stacks.
gp = sched.gfreeStack
sched.gfreeStack = gp.schedlink.ptr()
} else if sched.gfreeNoStack != nil {
gp = sched.gfreeNoStack
sched.gfreeNoStack = gp.schedlink.ptr()
} else {
break
}
_p_.gfreecnt++
sched.ngfree--
gp.schedlink.set(_p_.gfree)
_p_.gfree = gp
}
// 已經從全局拿了g了,再去從頭開始判斷
unlock(&sched.gflock)
goto retry
}
// 若是拿到了g,則判斷g是否有棧,沒有棧就分配
// 棧的分配跟內存分配差很少,首先建立幾個固定大小的棧的數組,而後到指定大小的數組裏面去分配就ok了,過大則直接全局分配
if gp != nil {
_p_.gfree = gp.schedlink.ptr()
_p_.gfreecnt--
if gp.stack.lo == 0 {
// Stack was deallocated in gfput. Allocate a new one.
systemstack(func() {
gp.stack = stackalloc(_FixedStack)
})
gp.stackguard0 = gp.stack.lo + _StackGuard
} else {
// ... 省略 ...
}
}
// 注意: 若是全局沒有g,p也沒有g,則返回的gp仍是nil
return gp
}
複製代碼
runqput會把g放到p的本地隊列或者p.runnext,若是p的本地隊列過長,則把g到全局隊列,同時平衡p本地隊列的一半到全局
func runqput(_p_ *p, gp *g, next bool) {
if randomizeScheduler && next && fastrand()%2 == 0 {
next = false
}
// 若是next爲true,則放入到p.runnext裏面,並把原先runnext的g交換出來
if next {
retryNext:
oldnext := _p_.runnext
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
goto retryNext
}
if oldnext == 0 {
return
}
// Kick the old runnext out to the regular run queue.
gp = oldnext.ptr()
}
retry:
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
t := _p_.runqtail
// 判斷p的隊列的長度是否超了, runq是一個長度爲256的數組,超出的話就會放到全局隊列了
if t-h < uint32(len(_p_.runq)) {
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
return
}
// 把g放到全局隊列
if runqputslow(_p_, gp, h, t) {
return
}
// the queue is not full, now the put above must succeed
goto retry
}
複製代碼
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
var batch [len(_p_.runq)/2 + 1]*g
// First, grab a batch from local queue.
n := t - h
n = n / 2
if n != uint32(len(_p_.runq)/2) {
throw("runqputslow: queue is not full")
}
// 獲取p後面的一半
for i := uint32(0); i < n; i++ {
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
}
if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
return false
}
batch[n] = gp
// Link the goroutines.
for i := uint32(0); i < n; i++ {
batch[i].schedlink.set(batch[i+1])
}
// Now put the batch on global queue.
// 放到全局隊列隊尾
lock(&sched.lock)
globrunqputbatch(batch[0], batch[n], int32(n+1))
unlock(&sched.lock)
return true
}
複製代碼
新建任務至此基本結束,建立完成任務後,等待調度執行就行了,從上面能夠看出,任務的優先級是 p.runnext > p.runq > sched.runq
g從建立到執行結束並放入free隊列中的狀態轉換大體以下圖所示
當 newproc1建立完任務後,會嘗試喚醒m來執行任務
func wakep() {
// be conservative about spinning threads
// 一次應該只有一個m在spining,不然就退出
if !atomic.Cas(&sched.nmspinning, 0, 1) {
return
}
// 調用startm來執行
startm(nil, true)
}
複製代碼
調度m或者建立m來運行p,若是p==nil,就會嘗試獲取一個空閒p,p的隊列中有g,拿到p後才能拿到g
func startm(_p_ *p, spinning bool) {
lock(&sched.lock)
if _p_ == nil {
// 若是沒有指定p, 則從sched.pidle獲取空閒的p
_p_ = pidleget()
if _p_ == nil {
unlock(&sched.lock)
// 若是沒有獲取到p,重置nmspinning
if spinning {
// The caller incremented nmspinning, but there are no idle Ps,
// so it's okay to just undo the increment and give up.
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("startm: negative nmspinning")
}
}
return
}
}
// 首先嚐試從 sched.midle獲取一個空閒的m
mp := mget()
unlock(&sched.lock)
if mp == nil {
// 若是獲取不到空閒的m,則建立一個 mspining = true的m,並將p綁定到m上,直接返回
var fn func() if spinning {
// The caller incremented nmspinning, so set m.spinning in the new M.
fn = mspinning
}
newm(fn, _p_)
return
}
// 判斷獲取到的空閒m是不是spining狀態
if mp.spinning {
throw("startm: m is spinning")
}
// 判斷獲取到的m是否有p
if mp.nextp != 0 {
throw("startm: m has p")
}
if spinning && !runqempty(_p_) {
throw("startm: p has runnable gs")
}
// The caller incremented nmspinning, so set m.spinning in the new M.
// 調用函數的父函數已經增長了nmspinning, 這裏只須要設置m.spining就ok了,同時把p綁上來
mp.spinning = spinning
mp.nextp.set(_p_)
// 喚醒m
notewakeup(&mp.park)
}
複製代碼
newm 經過allocm函數來建立新m
func newm(fn func(), _p_ *p) {
// 新建一個m
mp := allocm(_p_, fn)
// 爲這個新建的m綁定指定的p
mp.nextp.set(_p_)
// ... 省略 ...
// 建立系統線程
newm1(mp)
}
複製代碼
func newm1(mp *m) {
// runtime cgo包會把iscgo設置爲true,這裏不分析
if iscgo {
var ts cgothreadstart
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
ts.g.set(mp.g0)
ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
ts.fn = unsafe.Pointer(funcPC(mstart))
if msanenabled {
msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
}
execLock.rlock() // Prevent process clone.
asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
execLock.runlock()
return
}
execLock.rlock() // Prevent process clone.
newosproc(mp)
execLock.runlock()
}
複製代碼
newosproc 建立一個新的系統線程,並執行mstart_stub函數,以後調用mstart
函數進入調度,後面在執行流程會分析
func newosproc(mp *m) {
stk := unsafe.Pointer(mp.g0.stack.hi)
// Initialize an attribute object.
var attr pthreadattr
var err int32
err = pthread_attr_init(&attr)
// Finally, create the thread. It starts at mstart_stub, which does some low-level
// setup and then calls mstart.
var oset sigset
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
// 建立線程,並傳入啓動啓動函數 mstart_stub, mstart_stub 以後調用mstart
err = pthread_create(&attr, funcPC(mstart_stub), unsafe.Pointer(mp))
sigprocmask(_SIG_SETMASK, &oset, nil)
if err != 0 {
write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
exit(1)
}
}
複製代碼
allocm這裏首先會釋放 sched的freem,而後再去建立m,並初始化m
func allocm(_p_ *p, fn func()) *m {
_g_ := getg()
_g_.m.locks++ // disable GC because it can be called from sysmon
if _g_.m.p == 0 {
acquirep(_p_) // temporarily borrow p for mallocs in this function
}
// Release the free M list. We need to do this somewhere and
// this may free up a stack we can use.
// 首先釋放掉freem列表
if sched.freem != nil {
lock(&sched.lock)
var newList *m
for freem := sched.freem; freem != nil; {
if freem.freeWait != 0 {
next := freem.freelink
freem.freelink = newList
newList = freem
freem = next
continue
}
stackfree(freem.g0.stack)
freem = freem.freelink
}
sched.freem = newList
unlock(&sched.lock)
}
mp := new(m)
// 啓動函數,根據startm調用來看,這個fn就是 mspinning, 會將m.mspinning設置爲true
mp.mstartfn = fn
// 初始化m,上面已經分析了
mcommoninit(mp)
// In case of cgo or Solaris or Darwin, pthread_create will make us a stack.
// Windows and Plan 9 will layout sched stack on OS stack.
// 爲新的m建立g0
if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" || GOOS == "darwin" {
mp.g0 = malg(-1)
} else {
mp.g0 = malg(8192 * sys.StackGuardMultiplier)
}
// 爲mp的g0綁定本身
mp.g0.m = mp
// 若是當前的m所綁定的是參數傳遞過來的p,解除綁定,由於參數傳遞過來的p稍後要綁定新建的m
if _p_ == _g_.m.p.ptr() {
releasep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
return mp
}
複製代碼
func notewakeup(n *note) {
var v uintptr
// 設置m 爲locked
for {
v = atomic.Loaduintptr(&n.key)
if atomic.Casuintptr(&n.key, v, locked) {
break
}
}
// Successfully set waitm to locked.
// What was it before?
// 根據m的原先的狀態,來判斷後面的執行流程,0則直接返回,locked則衝突,不然認爲是wating,喚醒
switch {
case v == 0:
// Nothing was waiting. Done.
case v == locked:
// Two notewakeups! Not allowed.
throw("notewakeup - double wakeup")
default:
// Must be the waiting m. Wake it up.
// 喚醒系統線程
semawakeup((*m)(unsafe.Pointer(v)))
}
}
複製代碼
至此的話,建立完任務g後,將g放入了p的local隊列或者是全局隊列,而後開始獲取了一個空閒的m或者新建一個m來執行g,m, p, g 都已經準備完成了,下面就是開始調度,來運行任務g了
在startm函數分析的過程當中會,能夠看到,有兩種獲取m的方式
m執行g有兩個起點,一個是線程啓動函數 mstart
, 另外一個則是休眠被喚醒後的調度schedule
了,咱們從頭開始,也就是mstart
, mstart
走到最後也是 schedule
調度
func mstart() {
_g_ := getg()
osStack := _g_.stack.lo == 0
if osStack {
// Initialize stack bounds from system stack.
// Cgo may have left stack size in stack.hi.
// minit may update the stack bounds.
// 從系統堆棧上直接劃出所需的範圍
size := _g_.stack.hi
if size == 0 {
size = 8192 * sys.StackGuardMultiplier
}
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
_g_.stack.lo = _g_.stack.hi - size + 1024
}
// Initialize stack guards so that we can start calling
// both Go and C functions with stack growth prologues.
_g_.stackguard0 = _g_.stack.lo + _StackGuard
_g_.stackguard1 = _g_.stackguard0
// 調用mstart1來處理
mstart1()
// Exit this thread.
if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" || GOOS == "darwin" {
// Window, Solaris, Darwin and Plan 9 always system-allocate
// the stack, but put it in _g_.stack before mstart,
// so the logic above hasn't set osStack yet.
osStack = true
}
// 退出m,正常狀況下mstart1調用schedule() 時,是再也不返回的,因此,不用擔憂系統線程的頻繁建立退出
mexit(osStack)
}
複製代碼
func mstart1() {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("bad runtime·mstart")
}
// Record the caller for use as the top of stack in mcall and
// for terminating the thread.
// We're never coming back to mstart1 after we call schedule,
// so other calls can reuse the current frame.
// 保存調用者的pc sp等信息
save(getcallerpc(), getcallersp())
asminit()
// 初始化m的sigal的棧和mask
minit()
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
// 安裝sigal處理器
if _g_.m == &m0 {
mstartm0()
}
// 若是設置了mstartfn,就先執行這個
if fn := _g_.m.mstartfn; fn != nil {
fn()
}
if _g_.m.helpgc != 0 {
_g_.m.helpgc = 0
stopm()
} else if _g_.m != &m0 {
// 獲取nextp
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
schedule()
}
複製代碼
acquirep 函數主要是改變p的狀態,綁定 m p,經過吧p的mcache與m共享
func acquirep(_p_ *p) {
// Do the part that isn't allowed to have write barriers.
acquirep1(_p_)
// have p; write barriers now allowed
_g_ := getg()
// 把p的mcache與m共享
_g_.m.mcache = _p_.mcache
}
複製代碼
func acquirep1(_p_ *p) {
_g_ := getg()
// 讓m p互相綁定
_g_.m.p.set(_p_)
_p_.m.set(_g_.m)
_p_.status = _Prunning
}
複製代碼
開始進入到調度函數了,這是一個由schedule、execute、goroutine fn、goexit構成的邏輯循環,就算m是喚醒後,也是從設置的斷點開始執行
func schedule() {
_g_ := getg()
if _g_.m.locks != 0 {
throw("schedule: holding locks")
}
// 若是有lockg,中止執行當前的m
if _g_.m.lockedg != 0 {
// 解除lockedm的鎖定,並執行當前g
stoplockedm()
execute(_g_.m.lockedg.ptr(), false) // Never returns.
}
// We should not schedule away from a g that is executing a cgo call,
// since the cgo call is using the m's g0 stack.
if _g_.m.incgo {
throw("schedule: in cgo")
}
top:
// gc 等待
if sched.gcwaiting != 0 {
gcstopm()
goto top
}
var gp *g
var inheritTime bool
if gp == nil {
// Check the global runnable queue once in a while to ensure fairness.
// Otherwise two goroutines can completely occupy the local runqueue
// by constantly respawning each other.
// 爲了保證公平,每隔61次,從全局隊列上獲取g
if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
lock(&sched.lock)
gp = globrunqget(_g_.m.p.ptr(), 1)
unlock(&sched.lock)
}
}
if gp == nil {
// 全局隊列上獲取不到待運行的g,則從p local隊列中獲取
gp, inheritTime = runqget(_g_.m.p.ptr())
if gp != nil && _g_.m.spinning {
throw("schedule: spinning with local work")
}
}
if gp == nil {
// 若是p local獲取不到待運行g,則開始查找,這個函數會從 全局 io poll, p locl和其餘p local獲取待運行的g,後面詳細分析
gp, inheritTime = findrunnable() // blocks until work is available
}
// This thread is going to run a goroutine and is not spinning anymore,
// so if it was marked as spinning we need to reset it now and potentially
// start a new spinning M.
if _g_.m.spinning {
// 若是m是自旋狀態,取消自旋
resetspinning()
}
if gp.lockedm != 0 {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
// 若是g有lockedm,則休眠上交p,休眠m,等待新的m,喚醒後從這裏開始執行,跳轉到top
startlockedm(gp)
goto top
}
// 開始執行這個g
execute(gp, inheritTime)
}
複製代碼
由於當前的m綁定了lockedg,而當前g不是指定的lockedg,因此這個m不能執行,上交當前m綁定的p,而且休眠m直到調度lockedg
func stoplockedm() {
_g_ := getg()
if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
throw("stoplockedm: inconsistent locking")
}
if _g_.m.p != 0 {
// Schedule another M to run this p.
// 釋放當前p
_p_ := releasep()
handoffp(_p_)
}
incidlelocked(1)
// Wait until another thread schedules lockedg again.
notesleep(&_g_.m.park)
noteclear(&_g_.m.park)
status := readgstatus(_g_.m.lockedg.ptr())
if status&^_Gscan != _Grunnable {
print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
dumpgstatus(_g_)
throw("stoplockedm: not runnable")
}
// 上交了當前的p,將nextp設置爲可執行的p
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
複製代碼
調度 lockedm去運行lockedg
func startlockedm(gp *g) {
_g_ := getg()
mp := gp.lockedm.ptr()
if mp == _g_.m {
throw("startlockedm: locked to me")
}
if mp.nextp != 0 {
throw("startlockedm: m has p")
}
// directly handoff current P to the locked m
incidlelocked(-1)
// 移交當前p給lockedm,並設置爲lockedm.nextp,以便於lockedm喚醒後,能夠獲取
_p_ := releasep()
mp.nextp.set(_p_)
// m被喚醒後,從m休眠的地方開始執行,也就是schedule()函數中
notewakeup(&mp.park)
stopm()
}
複製代碼
func handoffp(_p_ *p) {
// handoffp must start an M in any situation where
// findrunnable would return a G to run on _p_.
// if it has local work, start it straight away
if !runqempty(_p_) || sched.runqsize != 0 {
// 調用startm開始調度
startm(_p_, false)
return
}
// no local work, check that there are no spinning/idle M's,
// otherwise our help is not required
// 判斷有沒有正在尋找p的m以及有沒有空閒的p
if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
startm(_p_, true)
return
}
lock(&sched.lock)
if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
sched.safePointFn(_p_)
sched.safePointWait--
if sched.safePointWait == 0 {
notewakeup(&sched.safePointNote)
}
}
// 若是 全局待運行g隊列不爲空,嘗試使用startm進行調度
if sched.runqsize != 0 {
unlock(&sched.lock)
startm(_p_, false)
return
}
// If this is the last running P and nobody is polling network,
// need to wakeup another M to poll network.
if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
unlock(&sched.lock)
startm(_p_, false)
return
}
// 把p放入到全局的空閒隊列,放回隊列就很少說了,參考allm的放回
pidleput(_p_)
unlock(&sched.lock)
}
複製代碼
開始執行g的代碼了
func execute(gp *g, inheritTime bool) {
_g_ := getg()
// 更改g的狀態,並不容許搶佔
casgstatus(gp, _Grunnable, _Grunning)
gp.waitsince = 0
gp.preempt = false
gp.stackguard0 = gp.stack.lo + _StackGuard
if !inheritTime {
// 調度計數
_g_.m.p.ptr().schedtick++
}
_g_.m.curg = gp
gp.m = _g_.m
// 開始執行g的代碼了
gogo(&gp.sched)
}
複製代碼
gogo函數承載的做用就是切換到g的棧,開始執行g的代碼,彙編內容就不分析了,可是有一個疑問就是,gogo執行完函數後,怎麼再次進入調度呢?
咱們回到newproc1
函數的L63 newg.sched.pc = funcPC(goexit) + sys.PCQuantum
,這裏保存了pc的質地爲goexit的地址,因此當執行完用戶代碼後,就會進入 goexit
函數
goexit 在彙編層面就是調用 runtime.goexit1
,而goexit1經過 mcall 調用了goexit0
因此這裏直接分析了goexit0
goexit0
重置g的狀態,並從新進行調度,這樣就調度就又回到了schedule()
了,開始循環往復的調度
func goexit0(gp *g) {
_g_ := getg()
// 轉換g的狀態爲dead,以放回空閒列表
casgstatus(gp, _Grunning, _Gdead)
if isSystemGoroutine(gp) {
atomic.Xadd(&sched.ngsys, -1)
}
// 清空g的狀態
gp.m = nil
locked := gp.lockedm != 0
gp.lockedm = 0
_g_.m.lockedg = 0
gp.paniconfault = false
gp._defer = nil // should be true already but just in case.
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
gp.writebuf = nil
gp.waitreason = 0
gp.param = nil
gp.labels = nil
gp.timer = nil
// Note that gp's stack scan is now "valid" because it has no
// stack.
gp.gcscanvalid = true
dropg()
// 把g放回空閒列表,以備複用
gfput(_g_.m.p.ptr(), gp)
// 再次進入調度循環
schedule()
}
複製代碼
至此,單次調度結束,再次進入調度,循環往復
func findrunnable() (gp *g, inheritTime bool) {
_g_ := getg()
// The conditions here and in handoffp must agree: if
// findrunnable would return a G to run, handoffp must start
// an M.
top:
_p_ := _g_.m.p.ptr()
// local runq
// 從p local 去獲取g
if gp, inheritTime := runqget(_p_); gp != nil {
return gp, inheritTime
}
// global runq
// 從全局的待運行d隊列獲取
if sched.runqsize != 0 {
lock(&sched.lock)
gp := globrunqget(_p_, 0)
unlock(&sched.lock)
if gp != nil {
return gp, false
}
}
// Poll network.
// This netpoll is only an optimization before we resort to stealing.
// We can safely skip it if there are no waiters or a thread is blocked
// in netpoll already. If there is any kind of logical race with that
// blocked thread (e.g. it has already returned from netpoll, but does
// not set lastpoll yet), this thread will do blocking netpoll below
// anyway.
// 看看netpoll中有沒有已經準備好的g
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
if gp := netpoll(false); gp != nil { // non-blocking
// netpoll returns list of goroutines linked by schedlink.
injectglist(gp.schedlink.ptr())
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
}
// Steal work from other P's.
// 若是sched.pidle == procs - 1,說明全部的p都是空閒的,無需遍歷其餘p了
procs := uint32(gomaxprocs)
if atomic.Load(&sched.npidle) == procs-1 {
// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
// New work can appear from returning syscall/cgocall, network or timers.
// Neither of that submits to local run queues, so no point in stealing.
goto stop
}
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
// 若是尋找p的m的數量,大於有g的p的數量的通常,就再也不去尋找了
if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
goto stop
}
// 設置當前m的自旋狀態
if !_g_.m.spinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
// 開始竊取其餘p的待運行g了
for i := 0; i < 4; i++ {
for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
if sched.gcwaiting != 0 {
goto top
}
stealRunNextG := i > 2 // first look for ready queues with more than 1 g
// 從其餘的p偷取通常的任務數量,還會隨機偷取p的runnext(過度了),偷取部分就不分析了,就是slice的操做而已
if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
return gp, false
}
}
}
stop:
// 對all作個鏡像備份
allpSnapshot := allp
// return P and block
lock(&sched.lock)
if sched.runqsize != 0 {
gp := globrunqget(_p_, 0)
unlock(&sched.lock)
return gp, false
}
if releasep() != _p_ {
throw("findrunnable: wrong p")
}
pidleput(_p_)
unlock(&sched.lock)
wasSpinning := _g_.m.spinning
if _g_.m.spinning {
// 設置非自旋狀態,由於找p的工做已經結束了
_g_.m.spinning = false
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("findrunnable: negative nmspinning")
}
}
// check all runqueues once again
for _, _p_ := range allpSnapshot {
if !runqempty(_p_) {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
if wasSpinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
goto top
}
break
}
}
// poll network
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
if _g_.m.p != 0 {
throw("findrunnable: netpoll with p")
}
if _g_.m.spinning {
throw("findrunnable: netpoll with spinning")
}
gp := netpoll(true) // block until new work is available
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
if gp != nil {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
injectglist(gp.schedlink.ptr())
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
injectglist(gp)
}
}
stopm()
goto top
}
複製代碼
這裏真的是無奈啊,爲了尋找一個可運行的g,也是煞費苦心,及時進入了stop 的label,仍是不死心,又來了一邊尋找。大體尋找過程能夠總結爲一下幾個:
stop會把當前m放到空閒列表裏面,同時綁定m.nextp 與 m
func stopm() {
_g_ := getg()
retry:
lock(&sched.lock)
// 把當前m放到sched.midle 的空閒列表裏
mput(_g_.m)
unlock(&sched.lock)
// 休眠,等待被喚醒
notesleep(&_g_.m.park)
noteclear(&_g_.m.park)
// 綁定p
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
複製代碼
go的監控是依靠函數 sysmon 來完成的,監控主要作一下幾件事
監控線程並非時刻在運行的,監控線程首次休眠20us,每次執行完後,增長一倍的休眠時間,可是最多休眠10ms
func sysmon() {
lock(&sched.lock)
sched.nmsys++
checkdead()
unlock(&sched.lock)
// If a heap span goes unused for 5 minutes after a garbage collection,
// we hand it back to the operating system.
scavengelimit := int64(5 * 60 * 1e9)
if debug.scavenge > 0 {
// Scavenge-a-lot for testing.
forcegcperiod = 10 * 1e6
scavengelimit = 20 * 1e6
}
lastscavenge := nanotime()
nscavenge := 0
lasttrace := int64(0)
idle := 0 // how many cycles in succession we had not wokeup somebody
delay := uint32(0)
for {
// 判斷當前循環,應該休眠的時間
if idle == 0 { // start with 20us sleep...
delay = 20
} else if idle > 50 { // start doubling the sleep after 1ms...
delay *= 2
}
if delay > 10*1000 { // up to 10ms
delay = 10 * 1000
}
usleep(delay)
// STW時休眠sysmon
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
lock(&sched.lock)
if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
atomic.Store(&sched.sysmonwait, 1)
unlock(&sched.lock)
// Make wake-up period small enough
// for the sampling to be correct.
maxsleep := forcegcperiod / 2
if scavengelimit < forcegcperiod {
maxsleep = scavengelimit / 2
}
shouldRelax := true
if osRelaxMinNS > 0 {
next := timeSleepUntil()
now := nanotime()
if next-now < osRelaxMinNS {
shouldRelax = false
}
}
if shouldRelax {
osRelax(true)
}
// 進行休眠
notetsleep(&sched.sysmonnote, maxsleep)
if shouldRelax {
osRelax(false)
}
lock(&sched.lock)
// 喚醒後,清除休眠狀態,繼續執行
atomic.Store(&sched.sysmonwait, 0)
noteclear(&sched.sysmonnote)
idle = 0
delay = 20
}
unlock(&sched.lock)
}
// trigger libc interceptors if needed
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
// poll network if not polled for more than 10ms
lastpoll := int64(atomic.Load64(&sched.lastpoll))
now := nanotime()
// 若是netpoll不爲空,每隔10ms檢查一下是否有ok的
if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
// 返回了已經獲取到結果的goroutine的列表
gp := netpoll(false) // non-blocking - returns list of goroutines
if gp != nil {
incidlelocked(-1)
// 把獲取到的g的列表加入到全局待運行隊列中
injectglist(gp)
incidlelocked(1)
}
}
// retake P's blocked in syscalls
// and preempt long running G's
// 搶奪syscall長時間阻塞的p和長時間運行的g
if retake(now) != 0 {
idle = 0
} else {
idle++
}
// check if we need to force a GC
// 經過gcTrigger.test() 函數判斷是否超過設定的強制觸發gc的時間間隔,
if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
lock(&forcegc.lock)
forcegc.idle = 0
forcegc.g.schedlink = 0
// 把gc的g加入待運行隊列,等待調度運行
injectglist(forcegc.g)
unlock(&forcegc.lock)
}
// scavenge heap once in a while
// 判斷是否有5分鐘未使用的span,有的話,歸還給系統
if lastscavenge+scavengelimit/2 < now {
mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
lastscavenge = now
nscavenge++
}
if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
lasttrace = now
schedtrace(debug.scheddetail > 0)
}
}
}
複製代碼
掃描netpoll,並把g存放到去全局隊列比較好理解,跟前面添加p和m的邏輯差很少,可是搶佔這裏就不是很理解了,你說搶佔就搶佔,被搶佔的g豈不是很沒面子,並且怎麼搶佔呢?
const forcePreemptNS = 10 * 1000 * 1000 // 10ms
func retake(now int64) uint32 {
n := 0
// Prevent allp slice changes. This lock will be completely
// uncontended unless we're already stopping the world.
lock(&allpLock)
// We can't use a range loop over allp because we may
// temporarily drop the allpLock. Hence, we need to re-fetch
// allp each time around the loop.
for i := 0; i < len(allp); i++ {
_p_ := allp[i]
if _p_ == nil {
// This can happen if procresize has grown
// allp but not yet created new Ps.
continue
}
pd := &_p_.sysmontick
s := _p_.status
if s == _Psyscall {
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
// pd.syscalltick 即 _p_.sysmontick.syscalltick 只有在sysmon的時候會更新,而 _p_.syscalltick 則會每次都更新,因此,當syscall以後,第一個sysmon檢測到的時候並不會搶佔,而是第二次開始纔會搶佔,中間間隔至少有20us,最多會有10ms
t := int64(_p_.syscalltick)
if int64(pd.syscalltick) != t {
pd.syscalltick = uint32(t)
pd.syscallwhen = now
continue
}
// On the one hand we don't want to retake Ps if there is no other work to do,
// but on the other hand we want to retake them eventually
// because they can prevent the sysmon thread from deep sleep.
// 是否有空p,有尋找p的m,以及當前的p在syscall以後,有沒有超過10ms
if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
continue
}
// Drop allpLock so we can take sched.lock.
unlock(&allpLock)
// Need to decrement number of idle locked M's
// (pretending that one more is running) before the CAS.
// Otherwise the M from which we retake can exit the syscall,
// increment nmidle and report deadlock.
incidlelocked(-1)
// 搶佔p,把p的狀態轉爲idle狀態
if atomic.Cas(&_p_.status, s, _Pidle) {
if trace.enabled {
traceGoSysBlock(_p_)
traceProcStop(_p_)
}
n++
_p_.syscalltick++
// 把當前p移交出去,上面已經分析過了
handoffp(_p_)
}
incidlelocked(1)
lock(&allpLock)
} else if s == _Prunning {
// Preempt G if it's running for too long.
// 若是p是running狀態,若是p下面的g執行過久了,則搶佔
t := int64(_p_.schedtick)
if int64(pd.schedtick) != t {
pd.schedtick = uint32(t)
pd.schedwhen = now
continue
}
// 判斷是否超出10ms, 不超過不搶佔
if pd.schedwhen+forcePreemptNS > now {
continue
}
// 開始搶佔
preemptone(_p_)
}
}
unlock(&allpLock)
return uint32(n)
}
複製代碼
這個函數的註釋,做者就代表這種搶佔並非很靠譜😂,咱們先看一下實現吧
func preemptone(_p_ *p) bool {
mp := _p_.m.ptr()
if mp == nil || mp == getg().m {
return false
}
gp := mp.curg
if gp == nil || gp == mp.g0 {
return false
}
// 標識搶佔字段
gp.preempt = true
// Every call in a go routine checks for stack overflow by
// comparing the current stack pointer to gp->stackguard0.
// Setting gp->stackguard0 to StackPreempt folds
// preemption into the normal stack overflow check.
// 更新stackguard0,保證能檢測到棧溢
gp.stackguard0 = stackPreempt
return true
}
複製代碼
在這裏,做者會更新 gp.stackguard0 = stackPreempt
,而後讓g誤覺得棧不夠用了,那就只有乖乖的去進行棧擴張,站擴張的話就用調用newstack
分配一個新棧,而後把原先的棧的內容拷貝過去,而在 newstack
裏面有一段以下
if preempt {
if thisg.m.locks != 0 || thisg.m.mallocing != 0 || thisg.m.preemptoff != "" || thisg.m.p.ptr().status != _Prunning {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp.stackguard0 = gp.stack.lo + _StackGuard
gogo(&gp.sched) // never return
}
}
複製代碼
而後這裏就發現g被搶佔了,那你棧不夠用就有多是假的,可是管你呢,你再去調度去吧,也不給你擴棧了,雖然做者和雨痕大神都吐槽了一下這個,可是這種搶佔方式自動1.5(也可能更早)就一直存在,且穩定運行,就說明仍是很牛逼的了
在調度器的設置上,最明顯的就是複用:g 的free鏈表, m的free列表, p的free列表,這樣就避免了重複建立銷燬鎖浪費的資源
其次就是多級緩存: 這一塊跟內存上的設計思想也是一直的,p一直有一個 g 的待運行隊列,本身沒有貨過多的時候,纔會平衡到全局隊列,全局隊列操做須要鎖,則本地操做則不須要,大大減小了鎖的建立銷燬所消耗的資源
至此,g m p的關係及狀態轉換大體都講解完成了,因爲對彙編這塊比較薄弱,因此基本略過了,右面有機會仍是須要多瞭解一點
《go語言學習筆記》