ubuntu配置機器學習環境(二) cuda 和cudnn 安裝

Nvidia CUDA Toolkit的安裝(cuda)html

PS:特別推薦*.deb的方法,目前已提供離線版的deb文件,該方法比較簡單,不須要切換到tty模式,所以再也不提供原來的*.run安裝方法,這裏以CUDA 7.5爲例。linux

1、CUDA Repositoryubuntu

1.1 安裝所需依賴包vim

sudo apt-get install build-essential  # basic requirement  
# sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe

 

獲取CUDA安裝包,安裝包請自行去NVidia官網下載。(https://developer.nvidia.com/cuda-downloads)app

cd 到安裝包所在的文件位置,執行下面命令。ui

$ sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64
$ sudo apt-get update

$ sudo apt-get install cuda

 

安裝完,這裏能夠重啓電腦,分辨率就會自動調整了,不過不必定會變成徹底適應屏幕。若是一開始安裝Ubuntu沒有出現輸入信號的問題的話,不存在分辨率自動調整的問題。google

1.2 設置環境變量:spa

(設置環境變量時,首先肯定好cuda安裝路徑和位置,這一步很是重要,在安裝時不須要對下面位置進行修改,系統會自動創建鏈接)code

在/etc/profile中添加CUDA環境變量(最好使用vim,不要用gedit,剛剛裝完系統gedit會致使鍵盤錯亂,增長沒必要要的麻煩)regexp

sudo gedit /etc/profile

 

在最後行添加內容:

export PATH=/usr/local/cuda/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

 

保存後, 執行下列命令, 使環境變量當即生效

source /etc/profile

 

同時須要添加lib庫路徑: 在 /etc/ld.so.conf.d/加入文件 cuda.conf,

sudo vim /etc/ld.so.conf.d/cuda.conf

 

內容以下

/usr/local/cuda/lib64 
/lib
/usr/lib
/usr/lib32

這裏把lib庫都加全了

 

保存後,執行下列命令使之馬上生效

sudo ldconfig -v

 

2.2 安裝CUDA SAMPLE:

進入/usr/local/cuda/samples, 執行下列命令來build samples

sudo make all -j8

 

所有編譯完成後, 進入/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery , 運行deviceQuery

/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery 

 

若是出現顯卡信息, 則驅動及顯卡安裝成功:

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 960"
CUDA Driver Version / Runtime Version 7.5 / 7.5
CUDA Capability Major/Minor version number: 5.2
Total amount of global memory: 4095 MBytes (4294246400 bytes)
( 8) Multiprocessors, (128) CUDA Cores/MP: 1024 CUDA Cores
GPU Max Clock rate: 1329 MHz (1.33 GHz)
Memory Clock rate: 3600 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 1048576 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 7.5, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GTX 960
Result = PASS

 


 

Nvidia CUDA Toolkit的安裝(cudnn)

2、CUDNN Repository

這部分比較簡單,首先要註冊Nvidia的開發帳號,而後才能下載cudnn。

簡單地說,就是複製幾個文件:庫文件和頭文件。將cudnn的頭文件複製到/usr/local/cuda/lib64,將cudnn的庫文件複製到/usr/local/cuda/include。

下載下來後,cd 到文件包目錄下,解壓文件:

tar -zxf cudnn-7.0-linux-x64-v4.0-prod.tgz

cd cuda
 #連接到cuda的庫裏 
sudo cp lib64/* /usr/local/cuda/lib64/
sudo cp include/cudnn.h /usr/local/cuda/include/

 

要不要連接cuDNN的庫文件:http://www.cnblogs.com/empty16/p/4793404.html (要,必需要!!) 
$ sudo ln -sf /usr/local/lib/libcudnn.so.4.0.7 /usr/local/lib/libcudnn.so.4

$ sudo ln -sf /usr/local/lib/libcudnn.so.4 /usr/local/lib/libcudnn.so

 

#連接完config更新

$ sudo ldconfig 

 

完成cuda和cudnn的安裝

相關文章
相關標籤/搜索