Swoole Server中master進程投遞數據到worker進程的性能優化

Swoole4.5版本中(目前還未發佈),咱們的Server有一個性能須要優化的地方,就是worker進程在收到master進程發來的包的時候,須要進行兩次的拷貝,才能夠把數據從PHP擴展層傳遞到PHP上層(也就是咱們事件回調函數的data參數)。react

咱們先來分析一下爲何會有性能的問題。首先,咱們須要一份會有性能問題的代碼。咱們git cloneswoole-src代碼,而後git checkout8235c82fea2130534a16fd20771dcab3408a763e這個commit位置:git

git checkout 8235c82fea2130534a16fd20771dcab3408a763e

咱們來分析一下代碼,首先看master進程是如何封裝數據而後發送給worker進程的。在函數process_send_packet裏面,咱們看核心的地方:shell

static int process_send_packet(swServer *serv, swPipeBuffer *buf, swSendData *resp, send_func_t _send, void* private_data)
{
    const char* data = resp->data;
    uint32_t send_n = resp->info.len;
    off_t offset = 0;

    uint32_t max_length = serv->ipc_max_size - sizeof(buf->info);

    if (send_n <= max_length)
    {
        buf->info.flags = 0;
        buf->info.len = send_n;
        memcpy(buf->data, data, send_n);

        int retval = _send(serv, buf, sizeof(buf->info) + send_n, private_data);
        return retval;
    }

    buf->info.flags = SW_EVENT_DATA_CHUNK;

    while (send_n > 0)
    {
        if (send_n > max_length)
        {
            buf->info.len = max_length;
        }
        else
        {
            buf->info.flags |= SW_EVENT_DATA_END;
            buf->info.len = send_n;
        }

        memcpy(buf->data, data + offset, buf->info.len);

        if (_send(serv, buf, sizeof(buf->info) + buf->info.len, private_data) < 0)
        {
            return SW_ERR;
        }

        send_n -= buf->info.len;
        offset += buf->info.len;
    }

    return SW_OK;
}

首先,咱們來講一下process_send_packet這個函數的參數:服務器

其中,swoole

swServer *serv就是咱們建立的那個Serverapp

swPipeBuffer *buf指向的內存裏面的數據須要發送給worker進程。函數

swSendData *resp裏面存放了master進程收到的客戶端數據以及一個swDataHead info頭部。性能

_send是一個回調函數,這裏面的邏輯就是master進程把swPipeBuffer *buf裏面的數據發送給worker進程。fetch

void* private_data這裏是一個swWorker *worker類型的指針轉換過來的。指定了master進程須要發送的那個worker進程。大數據

說明一點,這裏咱們是以 Server設置了 eof選項爲例子講解的(假設設置了 "\r\n")。由於 TCP是面向字節流的,即便客戶端發送了一個很大的包過來,服務器一次 read出來的數據也不見得很是大。若是不設置 eof的話,是不會致使咱們這篇文章所說的性能問題。

介紹完了process_send_packet函數的參數以後,咱們來看看代碼是如何實現的:

const char* data = resp->data;

首先,讓data指向resp->data,也就是客戶端發來的實際數據。例如,客戶端發來了字符串hello world\r\n,那麼data裏面存放的就是hello world\r\n

uint32_t send_n = resp->info.len;

標誌着resp->data數據的長度。例如,客戶端往服務器發送了1M的數據,那麼resp->info.len就是1048576

off_t offset = 0;

用來標誌哪些數據master進程已經發送給了worker進程。

uint32_t max_length = serv->ipc_max_size - sizeof(buf->info);

max_length表示master進程一次往worker進程發送的包最大長度。

注意: master進程和 worker進程是經過 udg方式進行通訊的。因此, master進程發送多少, worker進程就直接收多少
if (send_n <= max_length)
{
    buf->info.flags = 0;
    buf->info.len = send_n;
    memcpy(buf->data, data, send_n);

    int retval = _send(serv, buf, sizeof(buf->info) + send_n, private_data);
    return retval;
}

若是master進程要發給worker進程的數據小於max_length,那麼就直接調用_send函數,直接把數據發給worker進程。

buf->info.flags = SW_EVENT_DATA_CHUNK;

send_n大於max_length的時候,設置buf->info.flagsCHUNK,也就意味着須要把客戶端發來的數據先拆分紅一小段一小段的數據,而後再發送給worker進程。

while (send_n > 0)
{
    if (send_n > max_length)
    {
        buf->info.len = max_length;
    }
    else
    {
        buf->info.flags |= SW_EVENT_DATA_END;
        buf->info.len = send_n;
    }

    memcpy(buf->data, data + offset, buf->info.len);

    if (_send(serv, buf, sizeof(buf->info) + buf->info.len, private_data) < 0)
    {
        return SW_ERR;
    }

    send_n -= buf->info.len;
    offset += buf->info.len;
}

邏輯比較簡單,就是一個分段發送的過程。這裏須要注意的兩點:

一、buf->info.len的長度須要更新爲小段的chunk的長度,而不是大數據包的長度
二、最後一個chunk的info.flags須要變成SW_EVENT_DATA_END,意味着一個完整的包已經發完了

OK,分析完了master進程發包的過程,咱們來分析一下worker進程收包的過程。

咱們先看一下函數swWorker_onPipeReceive

static int swWorker_onPipeReceive(swReactor *reactor, swEvent *event)
{
    swServer *serv = (swServer *) reactor->ptr;
    swFactory *factory = &serv->factory;
    swPipeBuffer *buffer = serv->pipe_buffers[0];
    int ret;

    _read_from_pipe:

    if (read(event->fd, buffer, serv->ipc_max_size) > 0)
    {
        ret = swWorker_onTask(factory, (swEventData *) buffer);
        if (buffer->info.flags & SW_EVENT_DATA_CHUNK)
        {
            //no data
            if (ret < 0 && errno == EAGAIN)
            {
                return SW_OK;
            }
            else if (ret > 0)
            {
                goto _read_from_pipe;
            }
        }
        return ret;
    }

    return SW_ERR;
}

這個就是worker進程接收master進程發來的數據的代碼。

咱們看的,worker進程會直接把數據先讀取到buffer內存裏面,而後調用swWorker_onTask。咱們再來看看swWorker_onTask函數:

int swWorker_onTask(swFactory *factory, swEventData *task)
{
    swServer *serv = (swServer *) factory->ptr;
    swWorker *worker = SwooleWG.worker;

    //worker busy
    worker->status = SW_WORKER_BUSY;
    //packet chunk
    if (task->info.flags & SW_EVENT_DATA_CHUNK)
    {
        if (serv->merge_chunk(serv, task->info.reactor_id, task->data, task->info.len) < 0)
        {
            swoole_error_log(SW_LOG_WARNING, SW_ERROR_SESSION_DISCARD_DATA,
                    "cannot merge chunk to worker buffer, data[fd=%d, size=%d] lost", task->info.fd, task->info.len);
            return SW_OK;
        }
        //wait more data
        if (!(task->info.flags & SW_EVENT_DATA_END))
        {
            return SW_OK;
        }
    }

    switch (task->info.type)
    {
    case SW_SERVER_EVENT_SEND_DATA:
        //discard data
        if (swWorker_discard_data(serv, task) == SW_TRUE)
        {
            break;
        }
        swWorker_do_task(serv, worker, task, serv->onReceive);
        break;
    // 省略其餘的case
    default:
        swWarn("[Worker] error event[type=%d]", (int )task->info.type);
        break;
    }

    //worker idle
    worker->status = SW_WORKER_IDLE;

    //maximum number of requests, process will exit.
    if (!SwooleWG.run_always && worker->request_count >= SwooleWG.max_request)
    {
        swWorker_stop(worker);
    }
    return SW_OK;
}

咱們重點看看性能問題代碼:

if (task->info.flags & SW_EVENT_DATA_CHUNK)
{
    if (serv->merge_chunk(serv, task->info.reactor_id, task->data, task->info.len) < 0)
    {
        swoole_error_log(SW_LOG_WARNING, SW_ERROR_SESSION_DISCARD_DATA,
                "cannot merge chunk to worker buffer, data[fd=%d, size=%d] lost", task->info.fd, task->info.len);
        return SW_OK;
    }
    //wait more data
    if (!(task->info.flags & SW_EVENT_DATA_END))
    {
        return SW_OK;
    }
}

這裏,worker進程會先判斷master發來的數據是不是CHUNK數據,若是是,那麼會進行merge_chunk的操做。咱們看看merge_chunk對應的函數:

static int swServer_worker_merge_chunk(swServer *serv, int key, const char *data, size_t len)
{
    swString *package = swServer_worker_get_input_buffer(serv, key);
    //merge data to package buffer
    return swString_append_ptr(package, data, len);
}

咱們會先根據key的值(其實是reactor線程的id),獲取一塊全局的內存,而後把接收到的chunk數據,追加到這個全局的內存上面,而swString_append_ptr執行的就是memcpy的操做。

因此,這就是一個性能問題了。worker進程接收到的全部數據都會被完整的拷貝一遍。若是客戶端發來的數據很大,這個拷貝的開銷也是很大聲的。

所以,咱們對這部分合並的代碼進行了一個優化。咱們讓worker進程在接收master進程的數據以前,就準備好一塊足夠大的內存,而後直接把master進程發來的數據下來便可。

咱們先更新一下swoole-src的源碼:

git checkout 529ad44d578930b3607abedcfc278364df34bc73

咱們依舊先看看process_send_packet函數的代碼:

static int process_send_packet(swServer *serv, swPipeBuffer *buf, swSendData *resp, send_func_t _send, void* private_data)
{
    const char* data = resp->data;
    uint32_t send_n = resp->info.len;
    off_t offset = 0;
    uint32_t copy_n;

    uint32_t max_length = serv->ipc_max_size - sizeof(buf->info);

    if (send_n <= max_length)
    {
        buf->info.flags = 0;
        buf->info.len = send_n;
        memcpy(buf->data, data, send_n);

        int retval = _send(serv, buf, sizeof(buf->info) + send_n, private_data);
        return retval;
    }

    buf->info.flags = SW_EVENT_DATA_CHUNK;
    buf->info.len = send_n;

    while (send_n > 0)
    {
        if (send_n > max_length)
        {
            copy_n = max_length;
        }
        else
        {
            buf->info.flags |= SW_EVENT_DATA_END;
            copy_n = send_n;
        }

        memcpy(buf->data, data + offset, copy_n);

        swTrace("finish, type=%d|len=%d", buf->info.type, copy_n);

        if (_send(serv, buf, sizeof(buf->info) + copy_n, private_data) < 0)
        {
            return SW_ERR;
        }

        send_n -= copy_n;
        offset += copy_n;
    }

    return SW_OK;
}

咱們聚焦修改的地方,主要是對CHUNK的處理:

buf->info.flags = SW_EVENT_DATA_CHUNK;
buf->info.len = send_n;

咱們發現,buf->info.len的長度不是每一個小段chunk的長度了,而是整個大包的長度了。爲何能夠這樣作呢?由於master進程與worker進程是經過udg進行通訊的,因此,worker進程在調用recv的時候,返回值實際上就是chunk的長度了,因此buf->info.len裏面存儲chunk的長度沒有必要。

其餘地方的邏輯和以前的代碼沒有區別。

咱們再來看看worker進程是如何接收master進程發來的數據的。在函數swWorker_onPipeReceive裏面:

static int swWorker_onPipeReceive(swReactor *reactor, swEvent *event)
{
    int ret;
    ssize_t recv_n = 0;
    swServer *serv = (swServer *) reactor->ptr;
    swFactory *factory = &serv->factory;
    swPipeBuffer *pipe_buffer = serv->pipe_buffers[0];
    void *buffer;
    struct iovec buffers[2];

    // peek
    recv_n = recv(event->fd, &pipe_buffer->info, sizeof(pipe_buffer->info), MSG_PEEK);
    if (recv_n < 0 && errno == EAGAIN)
    {
        return SW_OK;
    }
    else if (recv_n < 0)
    {
        return SW_ERR;
    }

    if (pipe_buffer->info.flags & SW_EVENT_DATA_CHUNK)
    {
        buffer = serv->get_buffer(serv, &pipe_buffer->info);
        _read_from_pipe:

        buffers[0].iov_base = &pipe_buffer->info;
        buffers[0].iov_len = sizeof(pipe_buffer->info);
        buffers[1].iov_base = buffer;
        buffers[1].iov_len = serv->ipc_max_size - sizeof(pipe_buffer->info);

        recv_n = readv(event->fd, buffers, 2);
        if (recv_n < 0 && errno == EAGAIN)
        {
            return SW_OK;
        }
        if (recv_n > 0)
        {
            serv->add_buffer_len(serv, &pipe_buffer->info, recv_n - sizeof(pipe_buffer->info));
        }

        if (pipe_buffer->info.flags & SW_EVENT_DATA_CHUNK)
        {
            //wait more chunk data
            if (!(pipe_buffer->info.flags & SW_EVENT_DATA_END))
            {
                goto _read_from_pipe;
            }
            else
            {
                pipe_buffer->info.flags |= SW_EVENT_DATA_OBJ_PTR;
                /**
                 * Because we don't want to split the swEventData parameters into swDataHead and data,
                 * we store the value of the worker_buffer pointer in swEventData.data.
                 * The value of this pointer will be fetched in the swServer_worker_get_packet function.
                 */
                serv->copy_buffer_addr(serv, pipe_buffer);
            }
        }
    }
    else
    {
        recv_n = read(event->fd, pipe_buffer, serv->ipc_max_size);
    }

    if (recv_n > 0)
    {
        ret = swWorker_onTask(factory, (swEventData *) pipe_buffer, recv_n - sizeof(pipe_buffer->info));
        return ret;
    }

    return SW_ERR;
}

其中,

recv_n = recv(event->fd, &pipe_buffer->info, sizeof(pipe_buffer->info), MSG_PEEK);
if (recv_n < 0 && errno == EAGAIN)
{
    return SW_OK;
}
else if (recv_n < 0)
{
    return SW_ERR;
}

咱們先對內核緩衝區裏面的數據進行一次peek操做,來獲取到head部分。這樣咱們就知道數據是不是以CHUNK方式發來的了。

if (pipe_buffer->info.flags & SW_EVENT_DATA_CHUNK)
{
    buffer = serv->get_buffer(serv, &pipe_buffer->info);
    _read_from_pipe:

    buffers[0].iov_base = &pipe_buffer->info;
    buffers[0].iov_len = sizeof(pipe_buffer->info);
    buffers[1].iov_base = buffer;
    buffers[1].iov_len = serv->ipc_max_size - sizeof(pipe_buffer->info);

    recv_n = readv(event->fd, buffers, 2);
    if (recv_n < 0 && errno == EAGAIN)
    {
        return SW_OK;
    }
    if (recv_n > 0)
    {
        serv->add_buffer_len(serv, &pipe_buffer->info, recv_n - sizeof(pipe_buffer->info));
    }

    if (pipe_buffer->info.flags & SW_EVENT_DATA_CHUNK)
    {
        //wait more chunk data
        if (!(pipe_buffer->info.flags & SW_EVENT_DATA_END))
        {
            goto _read_from_pipe;
        }
        else
        {
            pipe_buffer->info.flags |= SW_EVENT_DATA_OBJ_PTR;
            /**
                * Because we don't want to split the swEventData parameters into swDataHead and data,
                * we store the value of the worker_buffer pointer in swEventData.data.
                * The value of this pointer will be fetched in the swServer_worker_get_packet function.
                */
            serv->copy_buffer_addr(serv, pipe_buffer);
        }
    }
}

若是是CHUNK方式發來的數據,那麼咱們執行以下的操做:

buffer = serv->get_buffer(serv, &pipe_buffer->info);

get_buffer是一個回調函數,對應:

static void* swServer_worker_get_buffer(swServer *serv, swDataHead *info)
{
    swString *worker_buffer = swServer_worker_get_input_buffer(serv, info->reactor_id);

    if (worker_buffer->size < info->len)
    {
        swString_extend(worker_buffer, info->len);
    }

    return worker_buffer->str + worker_buffer->length;
}

這裏,咱們會先判斷這塊全局的buffer是否足夠的大,能夠接收完整個大包,若是不夠大,咱們擴容到足夠的大。

_read_from_pipe:

buffers[0].iov_base = &pipe_buffer->info;
buffers[0].iov_len = sizeof(pipe_buffer->info);
buffers[1].iov_base = buffer;
buffers[1].iov_len = serv->ipc_max_size - sizeof(pipe_buffer->info);

recv_n = readv(event->fd, buffers, 2);

而後,咱們調用readv,把head和實際的數據分別存在了兩個地方。這麼作是避免爲了把head和實際的數據作拆分而致使的內存拷貝。

經過以上方式,Swoole Server減小了一次內存拷貝。

相關文章
相關標籤/搜索