Given a sequence of integers, find the longest increasing subsequence (LIS).segmentfault
You code should return the length of the LIS.spa
Example
For[5, 4, 1, 2, 3]
, the LIS is[1, 2, 3]
, return3
For[4, 2, 4, 5, 3, 7]
, the LIS is[4, 4, 5, 7]
, return4
指針
因爲是求最長的子序列,能夠index不連續,能夠考慮用DP解決。好比dp[i]
表示覺得i元素結尾的子序列的最大長度,那麼能夠根據全部dp[j]
(j < i)來獲得dp[i]
的值。code
這道題也能夠有簡單的Follow up, 好比找index是連續的增長或減小的子序列最大長度。
因爲index是連續,直接兩個指針就能夠解決,注意兩種可能性,一種增大,一種減少。getExample
For[5, 4, 2, 1, 3]
, the LICS is[5, 4, 2, 1]
, return4
.
For[5, 1, 2, 3, 4]
, the LICS is[1, 2, 3, 4]
, return4
.it這道題與另一道題比較也比較相似,可參考Binary Tree Longest Consecutive Sequence。io
time: O(n^2), space: O(n)class
public class Solution { public int longestIncreasingSubsequence(int[] nums) { if (nums.length == 0) return 0; int max = 0; int[] dp = new int[nums.length]; for (int i = 0; i < nums.length; i++) { dp[i] = 1; for (int j = 0; j < i; j++) { if (nums[i] >= nums[j]) // 必須是遞增 dp[i] = Math.max(dp[i], dp[j] + 1); } max = Math.max(max, dp[i]); // 更新全局最大值 } return max; } }
time: O(n), space: O(n)im
public class Solution { public int longestIncreasingContinuousSubsequence(int[] A) { // Write your code here if (A == null || A.length == 0) { return 0; } int l = 0; int r = 1; int max = 1; while (r < A.length) { if (A[r] > A[r - 1]) { // 連續增長的狀況 while (r < A.length && A[r] > A[r - 1]) { r++; } } else { // 連續減少的狀況 while (r < A.length && A[r] < A[r - 1]) { r++; } } max = Math.max(max, r - l); l = r - 1; } return max; } }