0 文章概述
你們可能都遇到過DUBBO線程池打滿這個問題,剛開始遇到這個問題可能會比較慌,常見方案可能就是重啓服務,但也不知道重啓是否能夠解決。我認爲重啓不只不能解決問題,甚至有可能加重問題,這是爲何呢?本文咱們就一塊兒分析DUBBO線程池打滿這個問題。java
1 基礎知識
1.1 DUBBO線程模型
1.1.1 基本概念
DUBBO底層網絡通訊採用Netty框架,咱們編寫一個Netty服務端進行觀察:linux
public class NettyServer { public static void main(String[] args) throws Exception { EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(8); try { ServerBootstrap bootstrap = new ServerBootstrap(); bootstrap.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, 128) .childOption(ChannelOption.SO_KEEPALIVE, true) .childHandler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new NettyServerHandler()); } }); ChannelFuture channelFuture = bootstrap.bind(7777).sync(); System.out.println("服務端準備就緒"); channelFuture.channel().closeFuture().sync(); } catch (Exception ex) { System.out.println(ex.getMessage()); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } }
BossGroup線程組只有一個線程處理客戶端鏈接請求,鏈接完成後將完成三次握手的SocketChannel鏈接分發給WorkerGroup處理讀寫請求,這兩個線程組被稱爲「IO線程」。spring
咱們再引出「業務線程」這個概念。服務生產者接收到請求後,若是處理邏輯能夠快速處理完成,那麼能夠直接放在IO線程處理,從而減小線程池調度與上下文切換。可是若是處理邏輯很是耗時,或者會發起新IO請求例如查詢數據庫,那麼必須派發到業務線程池處理。數據庫
DUBBO提供了多種線程模型,選擇線程模型須要在配置文件指定dispatcher屬性:apache
<dubbo:protocol name="dubbo" dispatcher="all" /> <dubbo:protocol name="dubbo" dispatcher="direct" /> <dubbo:protocol name="dubbo" dispatcher="message" /> <dubbo:protocol name="dubbo" dispatcher="execution" /> <dubbo:protocol name="dubbo" dispatcher="connection" />
不一樣線程模型在選擇是使用IO線程仍是業務線程,DUBBO官網文檔說明以下:bootstrap
all 全部消息都派發到業務線程池,包括請求,響應,鏈接事件,斷開事件,心跳 direct 全部消息都不派發到業務線程池,所有在IO線程直接執行 message 只有請求響應消息派發到業務線程池,其它鏈接斷開事件,心跳等消息直接在IO線程執行 execution 只有請求消息派發到業務線程池,響應和其它鏈接斷開事件,心跳等消息直接在IO線程執行 connection 在IO線程上將鏈接斷開事件放入隊列,有序逐個執行,其它消息派發到業務線程池
1.1.2 肯定時機
生產者和消費者在初始化時會肯定線程模型:windows
// 生產者 public class NettyServer extends AbstractServer implements Server { public NettyServer(URL url, ChannelHandler handler) throws RemotingException { super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME))); } } // 消費者 public class NettyClient extends AbstractClient { public NettyClient(final URL url, final ChannelHandler handler) throws RemotingException { super(url, wrapChannelHandler(url, handler)); } }
生產者和消費者默認線程模型都是AllDispatcher,ChannelHandlers.wrap方法能夠獲取Dispatch自適應擴展點。若是咱們在配置文件中指定dispatcher,擴展點加載器會從URL獲取屬性值加載對應線程模型。本文以生產者爲例進行分析:數組
public class NettyServer extends AbstractServer implements Server { public NettyServer(URL url, ChannelHandler handler) throws RemotingException { // ChannelHandlers.wrap肯定線程策略 super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME))); } } public class ChannelHandlers { protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) { return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class).getAdaptiveExtension().dispatch(handler, url))); } } @SPI(AllDispatcher.NAME) public interface Dispatcher { @Adaptive({Constants.DISPATCHER_KEY, "channel.handler"}) ChannelHandler dispatch(ChannelHandler handler, URL url); }
1.1.3 源碼分析
咱們分析其中兩個線程模型源碼,其它線程模型請閱讀DUBBO源碼。AllDispatcher模型全部消息都派發到業務線程池,包括請求,響應,鏈接事件,斷開事件,心跳:緩存
public class AllDispatcher implements Dispatcher { // 線程模型名稱 public static final String NAME = "all"; // 具體實現策略 @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { return new AllChannelHandler(handler, url); } } public class AllChannelHandler extends WrappedChannelHandler { @Override public void connected(Channel channel) throws RemotingException { // 鏈接完成事件交給業務線程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CONNECTED)); } catch (Throwable t) { throw new ExecutionException("connect event", channel, getClass() + " error when process connected event", t); } } @Override public void disconnected(Channel channel) throws RemotingException { // 斷開鏈接事件交給業務線程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.DISCONNECTED)); } catch (Throwable t) { throw new ExecutionException("disconnect event", channel, getClass() + " error when process disconnected event", t); } } @Override public void received(Channel channel, Object message) throws RemotingException { // 請求響應事件交給業務線程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message)); } catch (Throwable t) { if(message instanceof Request && t instanceof RejectedExecutionException) { Request request = (Request)message; if(request.isTwoWay()) { String msg = "Server side(" + url.getIp() + "," + url.getPort() + ") threadpool is exhausted ,detail msg:" + t.getMessage(); Response response = new Response(request.getId(), request.getVersion()); response.setStatus(Response.SERVER_THREADPOOL_EXHAUSTED_ERROR); response.setErrorMessage(msg); channel.send(response); return; } } throw new ExecutionException(message, channel, getClass() + " error when process received event", t); } } @Override public void caught(Channel channel, Throwable exception) throws RemotingException { // 異常事件交給業務線程池 ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CAUGHT, exception)); } catch (Throwable t) { throw new ExecutionException("caught event", channel, getClass() + " error when process caught event", t); } } }
DirectDispatcher策略全部消息都不派發到業務線程池,所有在IO線程直接執行:微信
public class DirectDispatcher implements Dispatcher { // 線程模型名稱 public static final String NAME = "direct"; // 具體實現策略 @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { // 直接返回handler表示全部事件都交給IO線程處理 return handler; } }
1.2 DUBBO線程池策略
1.2.1 基本概念
上個章節分析了線程模型,咱們知道不一樣的線程模型會選擇使用仍是IO線程仍是業務線程。若是使用業務線程池,那麼使用什麼線程池策略是本章節須要回答的問題。DUBBO官網線程派發模型圖展現了線程模型和線程池策略的關係:
DUBBO提供了多種線程池策略,選擇線程池策略須要在配置文件指定threadpool屬性:
<dubbo:protocol name="dubbo" threadpool="fixed" threads="100" /> <dubbo:protocol name="dubbo" threadpool="cached" threads="100" /> <dubbo:protocol name="dubbo" threadpool="limited" threads="100" /> <dubbo:protocol name="dubbo" threadpool="eager" threads="100" />
不一樣線程池策略會建立不一樣特性的線程池:
fixed 包含固定個數線程 cached 線程空閒一分鐘會被回收,當新請求到來時會建立新線程 limited 線程個數隨着任務增長而增長,但不會超過最大閾值。空閒線程不會被回收 eager 當全部核心線程數都處於忙碌狀態時,優先建立新線程執行任務,而不是當即放入隊列
1.2.2 肯定時機
本文以AllDispatcher爲例分析線程池策略肯定時機:
public class AllDispatcher implements Dispatcher { public static final String NAME = "all"; @Override public ChannelHandler dispatch(ChannelHandler handler, URL url) { return new AllChannelHandler(handler, url); } } public class AllChannelHandler extends WrappedChannelHandler { public AllChannelHandler(ChannelHandler handler, URL url) { super(handler, url); } }
在WrappedChannelHandler構造函數中若是配置指定threadpool屬性,擴展點加載器會從URL獲取屬性值加載對應線程池策略,默認策略爲fixed:
public class WrappedChannelHandler implements ChannelHandlerDelegate { public WrappedChannelHandler(ChannelHandler handler, URL url) { this.handler = handler; this.url = url; // 獲取線程池自適應擴展點 executor = (ExecutorService) ExtensionLoader.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url); String componentKey = Constants.EXECUTOR_SERVICE_COMPONENT_KEY; if (Constants.CONSUMER_SIDE.equalsIgnoreCase(url.getParameter(Constants.SIDE_KEY))) { componentKey = Constants.CONSUMER_SIDE; } DataStore dataStore = ExtensionLoader.getExtensionLoader(DataStore.class).getDefaultExtension(); dataStore.put(componentKey, Integer.toString(url.getPort()), executor); } } @SPI("fixed") public interface ThreadPool { @Adaptive({Constants.THREADPOOL_KEY}) Executor getExecutor(URL url); }
1.2.3 源碼分析
(1) FixedThreadPool
public class FixedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 線程名稱 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 線程個數默認200 int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS); // 隊列容量默認0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 隊列容量等於0使用阻塞隊列SynchronousQueue // 隊列容量小於0使用無界阻塞隊列LinkedBlockingQueue // 隊列容量大於0使用有界阻塞隊列LinkedBlockingQueue return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); } }
(2) CachedThreadPool
public class CachedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 獲取線程名稱 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心線程數默認0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大線程數默認Int最大值 int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE); // 隊列容量默認0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 線程空閒多少時間被回收默認1分鐘 int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE); // 隊列容量等於0使用阻塞隊列SynchronousQueue // 隊列容量小於0使用無界阻塞隊列LinkedBlockingQueue // 隊列容量大於0使用有界阻塞隊列LinkedBlockingQueue return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); } }
(3) LimitedThreadPool
public class LimitedThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 獲取線程名稱 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心線程數默認0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大線程數默認200 int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS); // 隊列容量默認0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 隊列容量等於0使用阻塞隊列SynchronousQueue // 隊列容量小於0使用無界阻塞隊列LinkedBlockingQueue // 隊列容量大於0使用有界阻塞隊列LinkedBlockingQueue // keepalive時間設置Long.MAX_VALUE表示不回收空閒線程 return new ThreadPoolExecutor(cores, threads, Long.MAX_VALUE, TimeUnit.MILLISECONDS, queues == 0 ? new SynchronousQueue<Runnable>() : (queues < 0 ? new LinkedBlockingQueue<Runnable>() : new LinkedBlockingQueue<Runnable>(queues)), new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); } }
(4) EagerThreadPool
咱們知道ThreadPoolExecutor是普通線程執行器。當線程池核心線程達到閾值時新任務放入隊列,當隊列已滿開啓新線程處理,當前線程數達到最大線程數時執行拒絕策略。
可是EagerThreadPool自定義線程執行策略,當線程池核心線程達到閾值時,新任務不會放入隊列而是開啓新線程進行處理(要求當前線程數沒有超過最大線程數)。當前線程數達到最大線程數時任務放入隊列。
public class EagerThreadPool implements ThreadPool { @Override public Executor getExecutor(URL url) { // 線程名 String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME); // 核心線程數默認0 int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS); // 最大線程數默認Int最大值 int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE); // 隊列容量默認0 int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES); // 線程空閒多少時間被回收默認1分鐘 int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE); // 初始化自定義線程池和隊列重寫相關方法 TaskQueue<Runnable> taskQueue = new TaskQueue<Runnable>(queues <= 0 ? 1 : queues); EagerThreadPoolExecutor executor = new EagerThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS, taskQueue, new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url)); taskQueue.setExecutor(executor); return executor; } }
1.3 一個公式
咱們知道DUBBO會選擇線程池策略進行業務處理,那麼如何估算可能產生的線程數呢?咱們首先分析一個問題:一個公司有7200名員工,天天上班打卡時間是早上8點到8點30分,每次打卡時間系統耗時5秒。請問RT、QPS、併發量分別是多少?
RT表示響應時間,問題已經告訴了咱們答案:
RT = 5
QPS表示每秒查詢量,假設簽到行爲平均分佈:
QPS = 7200 / (30 * 60) = 4
併發量表示系統同時處理的請求數量:
併發量 = QPS x RT = 4 x 5 = 20
根據上述實例引出以下公式:
併發量 = QPS x RT
若是系統爲每個請求分配一個處理線程,那麼併發量能夠近似等於線程數。基於上述公式不難看出併發量受QPS和RT影響,這兩個指標任意一個上升就會致使併發量上升。
可是這只是理想狀況,由於併發量受限於系統能力而不可能持續上升,例如DUBBO線程池就對線程數作了限制,超出最大線程數限制則會執行拒絕策略,而拒絕策略會提示線程池已滿,這就是DUBBO線程池打滿問題的根源。下面咱們分別分析RT上升和QPS上升這兩個緣由。
2 RT上升
2.1 生產者發生慢服務
2.1.1 緣由分析
(1) 生產者配置
<beans> <dubbo:registry address="zookeeper://127.0.0.1:2181" /> <dubbo:protocol name="dubbo" port="9999" /> <dubbo:service interface="com.java.front.dubbo.demo.provider.HelloService" ref="helloService" /> </beans>
(2) 生產者業務
package com.java.front.dubbo.demo.provider; public interface HelloService { public String sayHello(String name) throws Exception; } public class HelloServiceImpl implements HelloService { public String sayHello(String name) throws Exception { String result = "hello[" + name + "]"; // 模擬慢服務 Thread.sleep(10000L); System.out.println("生產者執行結果" + result); return result; } }
(3) 消費者配置
<beans> <dubbo:registry address="zookeeper://127.0.0.1:2181" /> <dubbo:reference id="helloService" interface="com.java.front.dubbo.demo.provider.HelloService" /> </beans>
(4) 消費者業務
public class Consumer { @Test public void testThread() { ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[] { "classpath*:METAINF/spring/dubbo-consumer.xml" }); context.start(); for (int i = 0; i < 500; i++) { new Thread(new Runnable() { @Override public void run() { HelloService helloService = (HelloService) context.getBean("helloService"); String result; try { result = helloService.sayHello("微信公衆號「JAVA前線」"); System.out.println("客戶端收到結果" + result); } catch (Exception e) { System.out.println(e.getMessage()); } } }).start(); } } }
依次運行生產者和消費者代碼,會發現日誌中會出現報錯信息。生產者日誌會打印線程池已滿:
Caused by: java.util.concurrent.RejectedExecutionException: Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 201 (completed: 1), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999! at org.apache.dubbo.common.threadpool.support.AbortPolicyWithReport.rejectedExecution(AbortPolicyWithReport.java:67) at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379) at org.apache.dubbo.remoting.transport.dispatcher.all.AllChannelHandler.caught(AllChannelHandler.java:88) ... 25 more
消費者日誌不只會打印線程池已滿,還會打印服務提供者信息和調用方法,咱們能夠根據日誌找到哪個方法有問題:
Failed to invoke the method sayHello in the service com.java.front.dubbo.demo.provider.HelloService. Tried 3 times of the providers [x.x.x.x:9999] (1/1) from the registry 127.0.0.1:2181 on the consumer x.x.x.x using the dubbo version 2.7.0-SNAPSHOT. Last error is: Failed to invoke remote method: sayHello, provider: dubbo://x.x.x.x:9999/com.java.front.dubbo.demo.provider.HelloService?anyhost=true&application=xpz-consumer1&check=false&dubbo=2.0.2&generic=false&group=&interface=com.java.front.dubbo.demo.provider.HelloService&logger=log4j&methods=sayHello&pid=33432®ister.ip=x.x.x.x&release=2.7.0-SNAPSHOT&remote.application=xpz-provider&remote.timestamp=1618632597509&side=consumer&timeout=100000000×tamp=1618632617392, cause: Server side(x.x.x.x,9999) threadpool is exhausted ,detail msg:Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 401 (completed: 201), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999!
2.1.2 解決方案
(1) 找出慢服務
DUBBO線程池打滿時會執行拒絕策略:
public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy { protected static final Logger logger = LoggerFactory.getLogger(AbortPolicyWithReport.class); private final String threadName; private final URL url; private static volatile long lastPrintTime = 0; private static Semaphore guard = new Semaphore(1); public AbortPolicyWithReport(String threadName, URL url) { this.threadName = threadName; this.url = url; } @Override public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { String msg = String.format("Thread pool is EXHAUSTED!" + " Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," + " Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!", threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(), e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(), url.getProtocol(), url.getIp(), url.getPort()); logger.warn(msg); // 打印線程快照 dumpJStack(); throw new RejectedExecutionException(msg); } private void dumpJStack() { long now = System.currentTimeMillis(); // 每10分鐘輸出線程快照 if (now - lastPrintTime < 10 * 60 * 1000) { return; } if (!guard.tryAcquire()) { return; } ExecutorService pool = Executors.newSingleThreadExecutor(); pool.execute(() -> { String dumpPath = url.getParameter(Constants.DUMP_DIRECTORY, System.getProperty("user.home")); System.out.println("AbortPolicyWithReport dumpJStack directory=" + dumpPath); SimpleDateFormat sdf; String os = System.getProperty("os.name").toLowerCase(); // linux文件位置/home/xxx/Dubbo_JStack.log.2021-01-01_20:50:15 // windows文件位置/user/xxx/Dubbo_JStack.log.2020-01-01_20-50-15 if (os.contains("win")) { sdf = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss"); } else { sdf = new SimpleDateFormat("yyyy-MM-dd_HH:mm:ss"); } String dateStr = sdf.format(new Date()); try (FileOutputStream jStackStream = new FileOutputStream(new File(dumpPath, "Dubbo_JStack.log" + "." + dateStr))) { JVMUtil.jstack(jStackStream); } catch (Throwable t) { logger.error("dump jStack error", t); } finally { guard.release(); } lastPrintTime = System.currentTimeMillis(); }); pool.shutdown(); } }
拒絕策略會輸出線程快照文件以保護現場,在分析線程快照文件時BLOCKED和TIMED_WAITING線程狀態須要咱們重點關注。若是發現大量線程阻塞或者等待狀態則能夠定位到具體代碼行:
DubboServerHandler-x.x.x.x:9999-thread-200 Id=230 TIMED_WAITING at java.lang.Thread.sleep(Native Method) at com.java.front.dubbo.demo.provider.HelloServiceImpl.sayHello(HelloServiceImpl.java:13) at org.apache.dubbo.common.bytecode.Wrapper1.invokeMethod(Wrapper1.java) at org.apache.dubbo.rpc.proxy.javassist.JavassistProxyFactory$1.doInvoke(JavassistProxyFactory.java:56) at org.apache.dubbo.rpc.proxy.AbstractProxyInvoker.invoke(AbstractProxyInvoker.java:85) at org.apache.dubbo.config.invoker.DelegateProviderMetaDataInvoker.invoke(DelegateProviderMetaDataInvoker.java:56) at org.apache.dubbo.rpc.protocol.InvokerWrapper.invoke(InvokerWrapper.java:56)
(2) 優化慢服務
如今咱們已經找到了慢服務,此時能夠優化慢服務了。優化慢服務就須要具體問題具體分析了,這不是本文的重點在此不進行展開。
2.2 生產者預熱不充分
2.2.1 緣由分析
還有一種RT上升的狀況是咱們不能忽視的,這種狀況就是提供者重啓後預熱不充分即被調用。由於當生產者剛啓動時須要預熱,須要和其它資源例如數據庫、緩存等創建鏈接,創建鏈接是須要時間的。若是此時大量消費者請求到未預熱的生產者,鏈路時間增長了鏈接時間,RT時間必然會增長,從而也會致使DUBBO線程池打滿的問題。
2.2.2 解決方案
(1) 等待生產者充分預熱
由於生產者預熱不充分致使線程池打滿問題,最容易發生在系統發佈時。例如發佈了一臺機器後發現線上出現線程池打滿問題,不要着急重啓機器,而是給機器一段時間預熱,等鏈接創建後問題會消失。同時咱們在發佈時也要分多批發布,不用一次發佈太多致使服務由於預熱問題形成大面積影響。
(2) DUBBO升級版本大於等於2.7.4
DUBBO消費者在調用時自己就有預熱機制,爲何還會出現預熱不充分問題?這是由於2.5.5以前版本以及2.7.2版本預熱機制是有問題的,簡而言之就是獲取啓動時間不正確致使預熱失效,2.7.4版本完全解決了這個問題,因此咱們要避免使用問題版本。下面咱們閱讀2.7.0版本的預熱機制源碼,看一看預熱機制如何發揮做用:
public class RandomLoadBalance extends AbstractLoadBalance { public static final String NAME = "random"; @Override protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { // invokers數量 int length = invokers.size(); // 權重是否相同 boolean sameWeight = true; // invokers權重數組 int[] weights = new int[length]; // 第一個invoker權重 int firstWeight = getWeight(invokers.get(0), invocation); weights[0] = firstWeight; // 權重值之和 int totalWeight = firstWeight; for (int i = 1; i < length; i++) { // 計算權重值 int weight = getWeight(invokers.get(i), invocation); weights[i] = weight; totalWeight += weight; // 任意一個invoker權重值不等於第一個invoker權重值則sameWeight設置爲FALSE if (sameWeight && weight != firstWeight) { sameWeight = false; } } // 權重值不等則根據總權重值計算 if (totalWeight > 0 && !sameWeight) { int offset = ThreadLocalRandom.current().nextInt(totalWeight); // 不斷減去權重值當小於0時直接返回 for (int i = 0; i < length; i++) { offset -= weights[i]; if (offset < 0) { return invokers.get(i); } } } // 全部服務權重值一致則隨機返回 return invokers.get(ThreadLocalRandom.current().nextInt(length)); } } public abstract class AbstractLoadBalance implements LoadBalance { static int calculateWarmupWeight(int uptime, int warmup, int weight) { // uptime/(warmup*weight) // 若是當前服務提供者沒過預熱期,用戶設置的權重將經過uptime/warmup減少 // 若是服務提供者設置權重很大可是還沒過預熱時間,從新計算權重會很小 int ww = (int) ((float) uptime / ((float) warmup / (float) weight)); return ww < 1 ? 1 : (ww > weight ? weight : ww); } protected int getWeight(Invoker<?> invoker, Invocation invocation) { // 獲取invoker設置權重值默認權重=100 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 若是權重大於0 if (weight > 0) { // 服務提供者發佈服務時間戳 long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L); if (timestamp > 0L) { // 服務已經發布多少時間 int uptime = (int) (System.currentTimeMillis() - timestamp); // 預熱時間默認10分鐘 int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP); // 生產者發佈時間大於0可是小於預熱時間 if (uptime > 0 && uptime < warmup) { // 從新計算權重值 weight = calculateWarmupWeight(uptime, warmup, weight); } } } // 服務發佈時間大於預熱時間直接返回設置權重值 return weight >= 0 ? weight : 0; } }
3 QPS上升
上面章節大篇幅討論了因爲RT上升形成的線程池打滿問題,如今咱們討論另外一個參數QPS。當上遊流量激增會致使建立大量線程池,也會形成線程池打滿問題。這時若是發現QPS超出了系統承受能力,咱們不得不採用降級方案保護系統,請參看我以前文章 《從反脆弱角度談技術系統的高可用性》
4 文章總結
本文首先介紹了DUBBO線程模型和線程池策略,而後咱們引出了公式,發現併發量受RT和QPS兩個參數影響,這兩個參數任意一個上升均可以形成線程池打滿問題。生產者出現慢服務或者預熱不充分都有可能形成RT上升,而上游流量激增會形成QPS上升,同時本文也給出瞭解決方案。DUBBO線程池打盡是一個必須重視的問題,但願本文對你們有所幫助。