import time, threading def addNum(): global num num -= 1 num = 100 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: t.join() print('final num:', num) 運行結果: final num: 0
import time, threading def addNum(): global num #num -= 1 tmp = num time.sleep(0.00001) num = tmp - 1 num = 100 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: t.join() print('final num:', num) 運行結果: final num: 93 或 final num: 91 或 final num: 94
緣由:
第一個程序中,num -= 1 這種寫法,程序執行動做太快(完成這個動做在 cup 切換的時間內)
第二個程序中,把 num -= 1 , 加入了 sleep 時間,100個線程存在沒有執行完就進行了切換,致使全局的 num 沒有正常返回。引用下大神的圖發現總結得很是好:
在上面的例子中 使用 join 方法會把整個線程停住,形成了串行,失去了多線程的意義,咱們只須要在涉及到計算公共數據的時候串行執行便可。多線程
import time, threading def addNum(): global num lock.acquire() tmp = num time.sleep(0.00001) num = tmp - 1 lock.release() num = 100 lock = threading.Lock() thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: t.join() print('final num:', num) 運算結果: final num: 0
import threading, time class myThread(threading.Thread): def doA(self): lockA.acquire() print(self.name, "gotlockA", time.ctime()) time.sleep(3) lockB.acquire() print(self.name, "gotlockB", time.ctime()) lockB.release() lockA.release() def doB(self): lockB.acquire() print(self.name, "gotlockB", time.ctime()) time.sleep(2) lockA.acquire() print(self.name, "gotlockA", time.ctime()) lockA.release() lockB.release() def run(self): self.doA() self.doB() if __name__ == '__main__': lockA = threading.Lock() lockB = threading.Lock() threads = [] for i in range(5): threads.append(myThread()) for t in threads: t.start() for t in threads: t.join() #運行結果: Thread-1 gotlockA Sat Jul 28 15:09:31 2018 Thread-1 gotlockB Sat Jul 28 15:09:34 2018 Thread-1 gotlockB Sat Jul 28 15:09:34 2018 Thread-2 gotlockA Sat Jul 28 15:09:34 2018
使用遞歸鎖併發
import threading, time class myThread(threading.Thread): def doA(self): lock.acquire() print(self.name, "gotlockA", time.ctime()) time.sleep(3) lock.acquire() print(self.name, "gotlockB", time.ctime()) lock.release() lock.release() def doB(self): lock.acquire() print(self.name, "gotlockB", time.ctime()) time.sleep(2) lock.acquire() print(self.name, "gotlockA", time.ctime()) lock.release() lock.release() def run(self): self.doA() self.doB() if __name__ == '__main__': lock = threading.RLock() threads = [] for i in range(5): threads.append(myThread()) for t in threads: t.start() for t in threads: t.join() 運行結果: Thread-1 gotlockA Sat Jul 28 15:19:35 2018 Thread-1 gotlockB Sat Jul 28 15:19:38 2018 Thread-1 gotlockB Sat Jul 28 15:19:38 2018 Thread-1 gotlockA Sat Jul 28 15:19:40 2018 Thread-3 gotlockA Sat Jul 28 15:19:40 2018 Thread-3 gotlockB Sat Jul 28 15:19:43 2018 Thread-3 gotlockB Sat Jul 28 15:19:43 2018 Thread-3 gotlockA Sat Jul 28 15:19:45 2018 Thread-5 gotlockA Sat Jul 28 15:19:45 2018 Thread-5 gotlockB Sat Jul 28 15:19:48 2018 Thread-5 gotlockB Sat Jul 28 15:19:48 2018 Thread-5 gotlockA Sat Jul 28 15:19:50 2018 Thread-4 gotlockA Sat Jul 28 15:19:50 2018 Thread-4 gotlockB Sat Jul 28 15:19:53 2018 Thread-4 gotlockB Sat Jul 28 15:19:53 2018 Thread-4 gotlockA Sat Jul 28 15:19:55 2018 Thread-2 gotlockA Sat Jul 28 15:19:55 2018 Thread-2 gotlockB Sat Jul 28 15:19:58 2018 Thread-2 gotlockB Sat Jul 28 15:19:58 2018 Thread-2 gotlockA Sat Jul 28 15:20:00 2018
信號量用來控制線程併發數的,BoundedSemaphore或Semaphore管理一個內置的計數 器,每當調用acquire()時-1,調用release()時+1,計數器不能小於0,當計數器爲 0時,acquire()將阻塞線程至同步鎖定狀態,直到其餘線程調用release()。(相似於停車位的概念)。
BoundedSemaphore與Semaphore的惟一區別在於前者將在調用release()時檢查計數 器的值是否超過了計數器的初始值,若是超過了將拋出一個異常。app
import threading, time class myThread(threading.Thread): def run(self): if semaphore.acquire(): print(self.name) time.sleep(5) semaphore.release() if __name__ == "__main__": semaphore = threading.Semaphore(5) thrs = [] for i in range(20): thrs.append(myThread()) for t in thrs: t.start() #運行結果: Thread-1 Thread-2 Thread-3 Thread-4 Thread-5 Thread-6 Thread-7 Thread-9 Thread-10 Thread-8 Thread-11 Thread-13 Thread-14 Thread-12 Thread-15 Thread-18 Thread-16 Thread-17 Thread-19 Thread-20
import threading, time class myThread(threading.Thread): def run(self): if semaphore.acquire(): print(self.name) time.sleep(5) semaphore.release() if __name__ == "__main__": semaphore = threading.BoundedSemaphore(5) thrs = [] for i in range(20): thrs.append(myThread()) for t in thrs: t.start() #運行結果: Thread-1 Thread-2 Thread-3 Thread-4 Thread-5 Thread-6 Thread-8 Thread-10 Thread-9 Thread-7 Thread-12 Thread-14 Thread-15 Thread-13 Thread-11 Thread-16 Thread-17 Thread-20 Thread-19 Thread-18