Java基於百度AI+JavaCV+OpenCV 實現攝像頭人數動態統計

【Java】人流量統計-動態版之視頻轉圖識別請訪問 http://ai.baidu.com/forum/topic/show/940413java

本文是基於上一篇進行迭代的。本文主要是以攝像頭畫面進行人流量統計。並對返回圖像進行展現。須要額外瞭解JavaCV OpenCV swing awt等  git

也許JavaCV OpenCV  不須要也能夠實現效果。可是小帥丶就先用這樣的方式實現了。別的方式你們就本身嘗試吧算法

有可能顯示的in out不對。請設置幀率試試。鄙人不是專業的。因此對幀率也不是很懂。如下代碼加入也沒有明顯的變化。json

grabber.setFrameRate(10);
grabber.setFrameNumber(10);

項目代碼地址 https://gitee.com/xshuai/bodyTrackcanvas

  • 注意的問題
1.動態識別的area參數爲矩陣的4個頂點的xy座標(即像素) 順序是 上左下右 也就是順時針一圈4個點的座標點
2.case_id 爲int 請不要給大於int範圍的值。或非int類型的值 即正整數就行 
3.area的值不要大於圖片自己的寬高
  • 須要用到的jar 經過maven引入(下載的jar較多。須要等待較長時間)
<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <ffmpeg.version>3.2.1-1.3</ffmpeg.version>
    <javacv.version>1.4.1</javacv.version>
  </properties>

  <dependencies>
  
 <dependency>
      <groupId>org.bytedeco.javacpp-presets</groupId>
      <artifactId>ffmpeg-platform</artifactId>
      <version>${ffmpeg.version}</version>
    </dependency>
	<!-- fastjson -->
	<dependency>
		<groupId>com.alibaba</groupId>
		<artifactId>fastjson</artifactId>
		<version>1.2.35</version>
	</dependency>
    <dependency>
      <groupId>org.bytedeco</groupId>
      <artifactId>javacv</artifactId>
      <version>${javacv.version}</version>
    </dependency>

	<dependency>
		<groupId>org.bytedeco.javacpp-presets</groupId>
		<artifactId>opencv-platform</artifactId>
		<version>3.4.1-1.4.1</version>
	</dependency>
  </dependencies>
  •  須要用到的Java工具類
HttpUtil https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
  • 調用接口示例代碼(須要本身的電腦有攝像頭哦)
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.awt.image.WritableRaster;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.net.URLEncoder;
import java.util.Base64;
import java.util.Base64.Decoder;
import java.util.Base64.Encoder;

import javax.imageio.ImageIO;
import javax.swing.JFrame;

import org.bytedeco.javacpp.BytePointer;
import org.bytedeco.javacpp.opencv_core.IplImage;
import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.Java2DFrameConverter;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.javacv.OpenCVFrameConverter.ToIplImage;
import org.bytedeco.javacv.OpenCVFrameGrabber;

import com.alibaba.fastjson.JSONObject;

import cn.xsshome.body.util.HttpUtil;
/**
 * 獲取攝像頭畫面進行處理並回顯圖片在畫面中
 * 人流量統計(動態版)JavaAPI示例代碼
 * @author 小帥丶
 *
 */
public class JavavcCameraTest {
	
	static OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
	//人流量統計(動態版)接口地址
	private static String BODY_TRACKING_URL="https://aip.baidubce.com/rest/2.0/image-classify/v1/body_tracking";
	
	private static String ACCESS_TOKEN ="";//接口的token
	/**
	 * 每一個case的初始化信號,爲true時對該case下的跟蹤算法進行初始化,爲false時重載該case的跟蹤狀態。當爲false且讀取不到相應case的信息時,直接從新初始化
	 * caseId=0 第一次請求  case_init=true  caseId>0 非第一次請求  case_init=false
	 */
	static int caseId = 0;
	public static void main(String[] args) throws Exception,
			InterruptedException {
		OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);
		grabber.start(); // 開始獲取攝像頭數據
		CanvasFrame canvas = new CanvasFrame("人流量實時統計");// 新建一個窗口
		canvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		canvas.setAlwaysOnTop(true);
		int ex = 0;
		while (true) {
			if (!canvas.isDisplayable()) {// 窗口是否關閉
				grabber.stop();// 中止抓取
				System.exit(2);// 退出
				grabber.close();
			}
			// canvas.showImage(grabber.grab());//顯示攝像頭抓取的畫面
			Java2DFrameConverter java2dFrameConverter = new Java2DFrameConverter();
			// 攝像頭抓取的畫面轉BufferedImage
			BufferedImage bufferedImage = java2dFrameConverter.getBufferedImage(grabber.grabFrame());
			// bufferedImage 請求API接口 檢測人流量
			String result = getBodyTrack(bufferedImage);
			BufferedImage bufferedImageAPI = getAPIResult(result);
			// 若是識別爲空 則顯示攝像頭抓取的畫面
			if (null == bufferedImageAPI) {
				canvas.showImage(grabber.grab());
			} else {
				// BufferedImage轉IplImage
				IplImage iplImageAPI = BufImgToIplData(bufferedImageAPI);
				// 將IplImage轉爲Frame 並顯示在窗口中
				Frame convertFrame = converter.convert(iplImageAPI);
				canvas.showImage(convertFrame);
			}
			ex++;
//			Thread.sleep(100);// 100毫秒刷新一次圖像.由於接口返回須要時間。因此看到的畫面仍是會有必定的延遲
		}
	}
	/**
     * BufferedImage轉IplImage
     * @param bufferedImageAPI
     * @return
     */
    private static IplImage BufImgToIplData(BufferedImage bufferedImageAPI) {
    	IplImage iplImage = null;
    	ToIplImage iplConverter = new OpenCVFrameConverter.ToIplImage();
    	Java2DFrameConverter java2dConverter = new Java2DFrameConverter();
    	iplImage = iplConverter.convert(java2dConverter.convert(bufferedImageAPI));
		return iplImage;
	}
	/**
     * IplImage 轉 BufferedImage
     * @param mat
     * @return BufferedImage
     */
	public static BufferedImage iplToBufImgData(IplImage mat) {
		if (mat.height() > 0 && mat.width() > 0) {
			//TYPE_3BYTE_BGR 表示一個具備 8 位 RGB 顏色份量的圖像,對應於 Windows 風格的 BGR 顏色模型,具備用 3 字節存儲的 Blue、Green 和 Red 三種顏色。 
			BufferedImage image = new BufferedImage(mat.width(), mat.height(),BufferedImage.TYPE_3BYTE_BGR);
			WritableRaster raster = image.getRaster();
			DataBufferByte dataBuffer = (DataBufferByte) raster.getDataBuffer();
			byte[] data = dataBuffer.getData();
			BytePointer bytePointer = new BytePointer(data);
			mat.imageData(bytePointer);
			return image;
		}
		return null;
	}
	/**
     * 接口結果轉bufferimage
     * @param result
     * @return BufferedImage
     * @throws Exception 
     */
    private static BufferedImage getAPIResult(String result) throws Exception {
    	JSONObject object = JSONObject.parseObject(result);
    	BufferedImage bufferedImage = null;
    	if(object.getInteger("person_num")>=1){
    		Decoder decoder = Base64.getDecoder();
    		byte [] b = decoder.decode(object.getString("image"));
    		ByteArrayInputStream in = new ByteArrayInputStream(b);  
    		bufferedImage = ImageIO.read(in); 
    		
    		ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
    		ImageIO.write(bufferedImage,"jpg", baos); 
    		 byte[] imageInByte = baos.toByteArray(); 
            // Base64解碼
    		for (int i = 0; i < imageInByte.length; ++i) {
    			if (imageInByte[i] < 0) {// 調整異常數據
    				imageInByte[i] += 256;
    			}
    		 }
    		 OutputStream out = new FileOutputStream("G:/testimg/xiaoshuairesult.jpg");//接口返回的渲染圖
    		 out.write(imageInByte);
    		 out.flush();
    		 out.close();
    		return bufferedImage;
    	}else{
    		return null;
    	}
	}
	/**
	 * 獲取接口處理結果圖
	 * @param bufferedImage
	 * @return String
	 * @throws Exception
	 */
	public static String getBodyTrack(BufferedImage bufferedImage) throws Exception{
		 ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
         ImageIO.write(bufferedImage,"jpg",baos); 
         byte[] imageInByte = baos.toByteArray(); 
         Encoder base64 = Base64.getEncoder();
         String imageBase64 = base64.encodeToString(imageInByte);
        // Base64解碼
		for (int i = 0; i < imageInByte.length; ++i) {
			if (imageInByte[i] < 0) {// 調整異常數據
				imageInByte[i] += 256;
			}
		 }
		 // 生成jpeg圖片
		 OutputStream out = new FileOutputStream("G:/testimg/xiaoshuai.jpg");// 新生成的圖片
		 out.write(imageInByte);
		 out.flush();
		 out.close();
		 System.out.println("保存成功");  
		 baos.flush();       
		 baos.close();
         String access_token = ACCESS_TOKEN;
                String case_id = "2018";
         String case_init = "";
         String area = "10,10,630,10,630,470,10,469";
         String params = "";
         if(caseId==0){
        	case_init = "true";
        	params = "image=" + URLEncoder.encode(imageBase64, "utf-8")
     				+ "&dynamic=true&show=true&case_id=" + case_id
     				+ "&case_init="+case_init +"&area="+area;
         }else{
        	 case_init = "false";
        	 params = "image=" + URLEncoder.encode(imageBase64, "utf-8")
 					+ "&dynamic=true&show=true&case_id=" + case_id
 					+ "&case_init="+case_init +"&area="+area; 
         }
         //靜態識別
//		 String params = "image=" + URLEncoder.encode(imageBase64, "utf-8")+"&dynamic=false&show=true";
 		 String result = HttpUtil.post(BODY_TRACKING_URL, access_token, params);
 		 System.out.println("接口內容==>"+result);
		 return result;
	}
	/**
     * IplImage 轉 BufferedImage
     * @param mat
     * @return BufferedImage
     */
	public static BufferedImage bufferimgToBase64(IplImage mat) {
		if (mat.height() > 0 && mat.width() > 0) {
			BufferedImage image = new BufferedImage(mat.width(), mat.height(),BufferedImage.TYPE_3BYTE_BGR);
			WritableRaster raster = image.getRaster();
			DataBufferByte dataBuffer = (DataBufferByte) raster.getDataBuffer();
			byte[] data = dataBuffer.getData();
			BytePointer bytePointer = new BytePointer(data);
			mat.imageData(bytePointer);
			return image;
		}
		return null;
	}
}

 

  • 攝像頭中的內容截圖示意(本人頭像就不直接顯示了。萬一嚇着你們呢) 也不要用去馬賽克的技術還原圖片哦。

 

仍是很好玩的、不須要本身去整OpenCV一套就能實現統計攝像頭中的人數。ssh

相關文章
相關標籤/搜索