1. 數據準備:收集數據與讀取app
2. 數據預處理:處理數據dom
3. 訓練集與測試集:將先驗數據按必定比例進行拆分。測試
4. 提取數據特徵,將文本解析爲詞向量 。spa
5. 訓練模型:創建模型,用訓練數據訓練模型。即根據訓練樣本集,計算詞項出現的機率P(xi|y),後獲得各種下詞彙出現機率的向量 。code
6. 測試模型:用測試數據集評估模型預測的正確率。orm
混淆矩陣blog
準確率、精確率、召回率、F值token
7. 預測一封新郵件的類別ip
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer
#預處理
def preprocessing(text): # text = text.decode("utf-8") tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] stops = stopwords.words('english') tokens = [token for token in tokens if token not in stops] tokens = [token.lower() for token in tokens if len(token) >= 3] lmtzr = WordNetLemmatizer() tokens = [lmtzr.lemmatize(token) for token in tokens] preprocessed_text = ' '.join(tokens) return preprocessed_text
#讀取數據集 import csv file_path=r'C:\User\Administrator\Desktop\sms.txt' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close();
#按0.7:0.3比例分爲訓練集和測試集
import numpy as np sms_data=np.array(sms_data) sms_label=np.array(sms_label)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
#將其向量化
from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='english', strip_accents='unicode') # ,norm='12' x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) return x_train,x_test,vectorizer
def beiNB(x_train, y_train,x_test):
# 樸素貝葉斯分類器
from sklearn.navie_bayes import MultinomialNB
clf = MultinomialNB().fit(x_train, y_train)
y_nb_pred = clf.predict(x_test)
return y_nb_pred,clf
def result(vectorizer,clf):
# 分類結果 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(y_nb_pred.shape, y_nb_pred) print('nb_confusion_matrix:') cm = confusion_matrix(y_test, y_nb_pred) print(cm) cr = classification_report(y_test, y_nb_pred) print(cr)
feature_name=vectorizer.get_feature_name()#出現過的單詞列表 coefs=clf_coef_ #先驗機率 P(x_i|y),6034 feaute_log_prob_ intercept=clf.intercept_ coefs_with_fns=sorted(zip(coefs[0],feature_names))#對數機率p(x_i|y)與單詞x_i映射 n=10 top=zip(coefs_with_fns[:n],coefs_with_fns[:-(n+1):-1])#最大的10個與最小的10個單詞 for (coef_1,fn_1),(coef_2,fn_2) in top: print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1,fn_1,coef_2,fn_2))