Observable 有 Cold 和 Hot 之分。html
Hot Observable 不管有沒有 Subscriber 訂閱,事件始終都會發生。當 Hot Observable 有多個訂閱者時,Hot Observable 與訂閱者們的關係是一對多的關係,能夠與多個訂閱者共享信息。java
然而,Cold Observable 只有 Subscriber 訂閱時,纔開始執行發射數據流的代碼。而且 Cold Observable 和 Subscriber 只能是一對一的關係,當有多個不一樣的訂閱者時,消息是從新完整發送的。也就是說對 Cold Observable 而言,有多個Subscriber的時候,他們各自的事件是獨立的。react
若是上面的解釋有點枯燥的話,那麼下面會更加形象地說明 Cold 和 Hot 的區別:安全
Think of a hot Observable as a radio station. All of the listeners that are listening to it at this moment listen to the same song.
A cold Observable is a music CD. Many people can buy it and listen to it independently.
by Nickolay Tsvetinov服務器
Observable 的 just、creat、range、fromXXX 等操做符都能生成Cold Observable。網絡
Consumer<Long> subscriber1 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println("subscriber1: "+aLong);
}
};
Consumer<Long> subscriber2 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber2: "+aLong);
}
};
Observable<Long> observable = Observable.create(new ObservableOnSubscribe<Long>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Long> e) throws Exception {
Observable.interval(10, TimeUnit.MILLISECONDS,Schedulers.computation())
.take(Integer.MAX_VALUE)
.subscribe(e::onNext);
}
}).observeOn(Schedulers.newThread());
observable.subscribe(subscriber1);
observable.subscribe(subscriber2);
try {
Thread.sleep(100L);
} catch (InterruptedException e) {
e.printStackTrace();
}複製代碼
執行結果:併發
subscriber1: 0
subscriber2: 0
subscriber1: 1
subscriber2: 1
subscriber1: 2
subscriber2: 2
subscriber2: 3
subscriber1: 3
subscriber1: 4
subscriber2: 4
subscriber2: 5
subscriber1: 5
subscriber1: 6
subscriber2: 6
subscriber1: 7
subscriber2: 7
subscriber1: 8
subscriber2: 8
subscriber1: 9
subscriber2: 9複製代碼
能夠看出,subscriber1 和 subscriber2 的結果並不必定是相同的,兩者是徹底獨立的。app
儘管 Cold Observable 很好,可是對於某些事件不肯定什麼時候發生以及不肯定 Observable 發射的元素數量,那還得使用 Hot Observable。好比:UI交互的事件、網絡環境的變化、地理位置的變化、服務器推送消息的到達等等。ide
使用 publish 操做符,可讓 Cold Observable 轉換成 Hot Observable。它將原先的 Observable 轉換成 ConnectableObservable。this
來看看剛纔的例子:
Consumer<Long> subscriber1 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println("subscriber1: "+aLong);
}
};
Consumer<Long> subscriber2 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber2: "+aLong);
}
};
Consumer<Long> subscriber3 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber3: "+aLong);
}
};
ConnectableObservable<Long> observable = Observable.create(new ObservableOnSubscribe<Long>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Long> e) throws Exception {
Observable.interval(10, TimeUnit.MILLISECONDS,Schedulers.computation())
.take(Integer.MAX_VALUE)
.subscribe(e::onNext);
}
}).observeOn(Schedulers.newThread()).publish();
observable.connect();
observable.subscribe(subscriber1);
observable.subscribe(subscriber2);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}
observable.subscribe(subscriber3);
try {
Thread.sleep(100L);
} catch (InterruptedException e) {
e.printStackTrace();
}複製代碼
注意,生成的 ConnectableObservable 須要調用connect()才能真正執行。
執行結果:
subscriber1: 0
subscriber2: 0
subscriber1: 1
subscriber2: 1
subscriber1: 2
subscriber2: 2
subscriber3: 2
subscriber1: 3
subscriber2: 3
subscriber3: 3
subscriber1: 4
subscriber2: 4
subscriber3: 4
subscriber1: 5
subscriber2: 5
subscriber3: 5
subscriber1: 6
subscriber2: 6
subscriber3: 6
subscriber1: 7
subscriber2: 7
subscriber3: 7
subscriber1: 8
subscriber2: 8
subscriber3: 8
subscriber1: 9
subscriber2: 9
subscriber3: 9
subscriber1: 10
subscriber2: 10
subscriber3: 10
subscriber1: 11
subscriber2: 11
subscriber3: 11複製代碼
能夠看到,多個訂閱的 Subscriber 共享同一事件。
在這裏,ConnectableObservable 是線程安全的。
Subject 和 Processor 的做用是相同的。Processor 是 RxJava2.x 新增的類,繼承自 Flowable 支持背壓控制。而 Subject 則不支持背壓控制。
Consumer<Long> subscriber1 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println("subscriber1: "+aLong);
}
};
Consumer<Long> subscriber2 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber2: "+aLong);
}
};
Consumer<Long> subscriber3 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber3: "+aLong);
}
};
Observable<Long> observable = Observable.create(new ObservableOnSubscribe<Long>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Long> e) throws Exception {
Observable.interval(10, TimeUnit.MILLISECONDS,Schedulers.computation())
.take(Integer.MAX_VALUE)
.subscribe(e::onNext);
}
}).observeOn(Schedulers.newThread());
PublishSubject<Long> subject = PublishSubject.create();
observable.subscribe(subject);
subject.subscribe(subscriber1);
subject.subscribe(subscriber2);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}
subject.subscribe(subscriber3);
try {
Thread.sleep(100L);
} catch (InterruptedException e) {
e.printStackTrace();
}複製代碼
執行結果跟上面使用 publish 操做符是同樣的。
Subject 既是 Observable 又是 Observer(Subscriber)。這一點能夠從 Subject 的源碼上看到。
import io.reactivex.*;
import io.reactivex.annotations.*;
/** * Represents an Observer and an Observable at the same time, allowing * multicasting events from a single source to multiple child Subscribers. * <p>All methods except the onSubscribe, onNext, onError and onComplete are thread-safe. * Use {@link #toSerialized()} to make these methods thread-safe as well. * * @param <T> the item value type */
public abstract class Subject<T> extends Observable<T> implements Observer<T> {
/** * Returns true if the subject has any Observers. * <p>The method is thread-safe. * @return true if the subject has any Observers */
public abstract boolean hasObservers();
/** * Returns true if the subject has reached a terminal state through an error event. * <p>The method is thread-safe. * @return true if the subject has reached a terminal state through an error event * @see #getThrowable() * &see {@link #hasComplete()} */
public abstract boolean hasThrowable();
/** * Returns true if the subject has reached a terminal state through a complete event. * <p>The method is thread-safe. * @return true if the subject has reached a terminal state through a complete event * @see #hasThrowable() */
public abstract boolean hasComplete();
/** * Returns the error that caused the Subject to terminate or null if the Subject * hasn't terminated yet. * <p>The method is thread-safe. * @return the error that caused the Subject to terminate or null if the Subject * hasn't terminated yet */
@Nullable
public abstract Throwable getThrowable();
/** * Wraps this Subject and serializes the calls to the onSubscribe, onNext, onError and * onComplete methods, making them thread-safe. * <p>The method is thread-safe. * @return the wrapped and serialized subject */
@NonNull
public final Subject<T> toSerialized() {
if (this instanceof SerializedSubject) {
return this;
}
return new SerializedSubject<T>(this);
}
}複製代碼
當 Subject 做爲 Subscriber 時,它能夠訂閱目標 Cold Observable 使對方開始發送事件。同時它又做爲Observable 轉發或者發送新的事件,讓 Cold Observable 藉助 Subject 轉換爲 Hot Observable。
注意,Subject 並非線程安全的,若是想要其線程安全須要調用toSerialized()
方法。(在RxJava1.x的時代還能夠用 SerializedSubject 代替 Subject,可是在RxJava2.x之後SerializedSubject再也不是一個public class)
然而,不少基於 EventBus 改造的 RxBus 並無這麼作,包括我之前也寫過這樣的 RxBus :( 。這樣的作法是很是危險的,由於會遇到併發的狀況。
reactivex官網的解釋是
make a Connectable Observable behave like an ordinary Observable
RefCount操做符把從一個可鏈接的 Observable 鏈接和斷開的過程自動化了。它操做一個可鏈接的Observable,返回一個普通的Observable。當第一個訂閱者訂閱這個Observable時,RefCount鏈接到下層的可鏈接Observable。RefCount跟蹤有多少個觀察者訂閱它,直到最後一個觀察者完成才斷開與下層可鏈接Observable的鏈接。
若是全部的訂閱者都取消訂閱了,則數據流中止。若是從新訂閱則從新開始數據流。
Consumer<Long> subscriber1 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println("subscriber1: "+aLong);
}
};
Consumer<Long> subscriber2 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber2: "+aLong);
}
};
ConnectableObservable<Long> connectableObservable = Observable.create(new ObservableOnSubscribe<Long>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Long> e) throws Exception {
Observable.interval(10, TimeUnit.MILLISECONDS,Schedulers.computation())
.take(Integer.MAX_VALUE)
.subscribe(e::onNext);
}
}).observeOn(Schedulers.newThread()).publish();
connectableObservable.connect();
Observable<Long> observable = connectableObservable.refCount();
Disposable disposable1 = observable.subscribe(subscriber1);
Disposable disposable2 = observable.subscribe(subscriber2);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}
disposable1.dispose();
disposable2.dispose();
System.out.println("從新開始數據流");
disposable1 = observable.subscribe(subscriber1);
disposable2 = observable.subscribe(subscriber2);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}複製代碼
執行結果:
subscriber1: 0
subscriber2: 0
subscriber1: 1
subscriber2: 1
從新開始數據流
subscriber1: 0
subscriber2: 0
subscriber1: 1
subscriber2: 1複製代碼
若是不是全部的訂閱者都取消了訂閱,只取消了部分。部分的訂閱者從新開始訂閱,則不會從頭開始數據流。
Consumer<Long> subscriber1 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println("subscriber1: "+aLong);
}
};
Consumer<Long> subscriber2 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber2: "+aLong);
}
};
Consumer<Long> subscriber3 = new Consumer<Long>() {
@Override
public void accept(@NonNull Long aLong) throws Exception {
System.out.println(" subscriber3: "+aLong);
}
};
ConnectableObservable<Long> connectableObservable = Observable.create(new ObservableOnSubscribe<Long>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Long> e) throws Exception {
Observable.interval(10, TimeUnit.MILLISECONDS,Schedulers.computation())
.take(Integer.MAX_VALUE)
.subscribe(e::onNext);
}
}).observeOn(Schedulers.newThread()).publish();
connectableObservable.connect();
Observable<Long> observable = connectableObservable.refCount();
Disposable disposable1 = observable.subscribe(subscriber1);
Disposable disposable2 = observable.subscribe(subscriber2);
observable.subscribe(subscriber3);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}
disposable1.dispose();
disposable2.dispose();
System.out.println("subscriber一、subscriber2 從新訂閱");
disposable1 = observable.subscribe(subscriber1);
disposable2 = observable.subscribe(subscriber2);
try {
Thread.sleep(20L);
} catch (InterruptedException e) {
e.printStackTrace();
}複製代碼
執行結果:
subscriber1: 0
subscriber2: 0
subscriber3: 0
subscriber1: 1
subscriber2: 1
subscriber3: 1
subscriber一、subscriber2 從新訂閱
subscriber3: 2
subscriber1: 2
subscriber2: 2
subscriber3: 3
subscriber1: 3
subscriber2: 3
subscriber3: 4
subscriber1: 4
subscriber2: 4複製代碼
在這裏,subscriber1和subscriber2先取消了訂閱,subscriber3並無取消訂閱。以後,subscriber1和subscriber2又從新訂閱。最終subscriber一、subscriber二、subscriber3的值保持一致。
share操做符封裝了publish().refCount()調用,能夠看其源碼。
/** * Returns a new {@link ObservableSource} that multicasts (shares) the original {@link ObservableSource}. As long as * there is at least one {@link Observer} this {@link ObservableSource} will be subscribed and emitting data. * When all subscribers have disposed it will dispose the source {@link ObservableSource}. * <p> * This is an alias for {@link #publish()}.{@link ConnectableObservable#refCount()}. * <p> *  * <dl> * <dt><b>Scheduler:</b></dt> * <dd>{@code share} does not operate by default on a particular {@link Scheduler}.</dd> * </dl> * * @return an {@code ObservableSource} that upon connection causes the source {@code ObservableSource} to emit items * to its {@link Observer}s * @see <a href="http://reactivex.io/documentation/operators/refcount.html">ReactiveX operators documentation: RefCount</a> */
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Observable<T> share() {
return publish().refCount();
}複製代碼
理解了 Hot Observable 和 Cold Observable 的區別纔可以寫出更好Rx代碼。同理,也能理解Hot & Cold Flowable。再者,在其餘語言的Rx版本中包括 RxSwift、RxJS 等也存在 Hot Observable 和 Cold Observable 這樣的概念。