[LTR] RankLib.jar 包介紹

1、介紹

RankLib.jar 是一個學習排名(Learning to rank)算法的庫,目前已經實現了以下幾種算法:java

  • MART
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

2、jar 包

Usage: java -jar RankLib.jar <Params>
Params:
  [+] Training (+ tuning and evaluation)
        # 訓練數據
        -train <file>           Training data
        # 指定排名算法
        -ranker <type>          Specify which ranking algorithm to use
                                0: MART (gradient boosted regression tree)
                                1: RankNet
                                2: RankBoost
                                3: AdaRank
                                4: Coordinate Ascent
                                6: LambdaMART
                                7: ListNet
                                8: Random Forests
                                9: Linear regression (L2 regularization)
        # 特徵描述文件,列出要學習的特徵,每行一個特徵,默認使用全部特徵
        [ -feature <file> ]     Feature description file: list features to be considered by the learner, each on a separate line
                                If not specified, all features will be used.
        # 
        [ -metric2t <metric> ]  Metric to optimize on the training data. Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)
        [ -gmax <label> ]       Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4})
        
        [ -silent ]             Do not print progress messages (which are printed by default)
        # 是否在驗證數據集上調整模型
        [ -validate <file> ]    Specify if you want to tune your system on the validation data (default=unspecified)
                                If specified, the final model will be the one that performs best on the validation data
        # 訓練-驗證數據集的分割比例
        [ -tvs <x \in [0..1]> ] If you don't have separate validation data, use this to set train-validation split to be (x)(1.0-x)
        # 學習模型保存到指定文件
        [ -save <model> ]       Save the model learned (default=not-save)
        # 是否要在數據上測試訓練的模型
        [ -test <file> ]        Specify if you want to evaluate the trained model on this data (default=unspecified)
        # 訓練-測試數據集的分割比例
        [ -tts <x \in [0..1]> ] Set train-test split to be (x)(1.0-x). -tts will override -tvs
        # 默認與 metric2t 一致
        [ -metric2T <metric> ]  Metric to evaluate on the test data (default to the same as specified for -metric2t)
        # 歸一化特徵向量,方法包括求和歸一化,均值/標準差歸一化,最大值/最小值歸一化
        [ -norm <method>]       Normalize all feature vectors (default=no-normalization). Method can be:
                                sum: normalize each feature by the sum of all its values
                                zscore: normalize each feature by its mean/standard deviation
                                linear: normalize each feature by its min/max values
        # 在訓練數據集上執行交叉驗證
        [ -kcv <k> ]            Specify if you want to perform k-fold cross validation using the specified training data (default=NoCV)
                                -tvs can be used to further reserve a portion of the training data in each fold for validation
        # 交叉驗證訓練庫模型的目錄
        [ -kcvmd <dir> ]        Directory for models trained via cross-validation (default=not-save)
        
        [ -kcvmn <model> ]      Name for model learned in each fold. It will be prefix-ed with the fold-number (default=empty)

    [-] RankNet-specific parameters # 特定參數
        # 訓練迭代次數
        [ -epoch <T> ]          The number of epochs to train (default=100)
        # 隱含層個數
        [ -layer <layer> ]      The number of hidden layers (default=1)
        # 每層隱含節點個數
        [ -node <node> ]        The number of hidden nodes per layer (default=10)
        # 學習率
        [ -lr <rate> ]          Learning rate (default=0.00005)

    [-] RankBoost-specific parameters # 特定參數
        # 訓練迭代次數
        [ -round <T> ]          The number of rounds to train (default=300)
        # 搜索的閾值候選個數
        [ -tc <k> ]             Number of threshold candidates to search. -1 to use all feature values (default=10)

    [-] AdaRank-specific parameters # 特定參數
        # 訓練迭代次數
        [ -round <T> ]          The number of rounds to train (default=500)
        # 
        [ -noeq ]               Train without enqueuing too-strong features (default=unspecified)
        # 連續兩輪學習之間的偏差
        [ -tolerance <t> ]      Tolerance between two consecutive rounds of learning (default=0.002)
        # 一個特徵能夠被連續選擇而不改變性能的最大次數
        [ -max <times> ]        The maximum number of times can a feature be consecutively selected without changing performance (default=5)

    [-] Coordinate Ascent-specific parameters # 特定參數
        [ -r <k> ]              The number of random restarts (default=5)
        [ -i <iteration> ]      The number of iterations to search in each dimension (default=25)
        [ -tolerance <t> ]      Performance tolerance between two solutions (default=0.001)
        [ -reg <slack> ]        Regularization parameter (default=no-regularization)

    [-] {MART, LambdaMART}-specific parameters # 特定參數
        # 樹的個數
        [ -tree <t> ]           Number of trees (default=1000)
        # 一個葉子的樣本個數
        [ -leaf <l> ]           Number of leaves for each tree (default=10)
        # 學習率
        [ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
        # 樹分割時的候選特徵個數
        [ -tc <k> ]             Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
        # 一個葉子最少的樣本個數
        [ -mls <n> ]            Min leaf support -- minimum #samples each leaf has to contain (default=1)
        [ -estop <e> ]          Stop early when no improvement is observed on validaton data in e consecutive rounds (default=100)

    [-] ListNet-specific parameters
        [ -epoch <T> ]          The number of epochs to train (default=1500)
        [ -lr <rate> ]          Learning rate (default=0.00001)

    [-] Random Forests-specific parameters # 隨機森林特定參數
        [ -bag <r> ]            Number of bags (default=300)
        # 子集採樣率
        [ -srate <r> ]          Sub-sampling rate (default=1.0)
        # 特徵採樣率
        [ -frate <r> ]          Feature sampling rate (default=0.3)
        [ -rtype <type> ]       Ranker to bag (default=0, i.e. MART)
        # 樹個數
        [ -tree <t> ]           Number of trees in each bag (default=1)
        # 每棵樹的葉節點個數
        [ -leaf <l> ]           Number of leaves for each tree (default=100)
        # 學習率
        [ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
        # 樹分割時使用的候選特徵閾值個數
        [ -tc <k> ]             Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
        [ -mls <n> ]            Min leaf support -- minimum #samples each leaf has to contain (default=1)

    [-] Linear Regression-specific parameters
        [ -L2 <reg> ]           L2 regularization parameter (default=1.0E-10)

  [+] Testing previously saved models # 測試已保存的模型
        # 加載模型
        -load <model>           The model to load
                                Multiple -load can be used to specify models from multiple folds (in increasing order),
                                  in which case the test/rank data will be partitioned accordingly.
        # 測試數據
        -test <file>            Test data to evaluate the model(s) (specify either this or -rank but not both)
        # 對指定文件中的樣本排序,與 -test 不能同時使用
        -rank <file>            Rank the samples in the specified file (specify either this or -test but not both)
        [ -metric2T <metric> ]  Metric to evaluate on the test data (default=ERR@10)
        [ -gmax <label> ]       Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4})
        [ -score <file>]        Store ranker's score for each object being ranked (has to be used with -rank)
        # 打印單個排名列表上的性能(必須與 -test 一塊兒使用)
        [ -idv <file> ]         Save model performance (in test metric) on individual ranked lists (has to be used with -test)
        # 特徵歸一化
        [ -norm ]               Normalize feature vectors (similar to -norm for training/tuning)

1. -train <file>

指定訓練數據的文件,訓練數據格式:node

label    qid:$id    $featureid:$featurevalue    $featureid:$featurevalue ... # description

每行表明一個樣本,相同查詢請求的樣本的 qid 相同,label 表示該樣本和該查詢請求的相關程度,description 描述信息,不參與訓練計算。算法

二、-ranker <type>

指定排名算法網絡

  • MART(Multiple Additive Regression Tree)多重增量回歸樹
  • GBDT(Gradient Boosting Decision Tree)梯度漸進決策樹
  • GBRT(Gradient Boosting Regression Tree)梯度漸進迴歸樹
  • TreeNet 決策樹網絡
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

三、-feature <file>

指定樣本的特徵定義文件,格式以下:dom

feature1
feature2
...
# featureK(該特徵不參與分析)

四、-metric2t <metric>

指定信息檢索中的評價指標,包括:
MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@kide

五、Example

java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -test MQ2008/Fold1/test.txt -validate MQ2008/Fold1/vali.txt -ranker 6 -metric2t NDCG@10 -metric2T ERR@10 -save mymodel.txt

命令解釋 >>>
訓練數據:MQ2008/Fold1/train.txt
測試數據:MQ2008/Fold1/test.txt
驗證數據:MQ2008/Fold1/vali.txt
排名算法:6,LambdaMART
評估指標:NDCG,取排名前 10 個數據進行計算
測試數據評估指標:ERR,取排名前 10 個數據進行計算
保存模型:mymodel.txt性能

  • 參數 -validate 是可選的,但能夠更好的模型結果,對於 RankNet/MART/LambdaMART 很是重要。
  • -metric2t 僅應用於 list-wise 算法(AdaRank、Coordinate Ascent 和 LambdaMART);point-wise 和 Pair-wise 算法(MART、RankNet、RankBoost)是使用本身內部的 RMSE/pair-wise loss 做爲評價指標。ListNet 雖然是 list-wise 算法,可是也不用 metric2t 指定評價指標。

六、k-fold cross validation

  • 順序分區
java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -ranker 4 -kcv 5 -kcvmd models/ -kcvmn ca -metric2t NDCG@10 -metric2T ERR@10

按順序將訓練數據拆分5等份,第 i 份數據做爲第 i 摺疊的測試數據,第 i 摺疊的訓練數據則是由其餘摺疊的數據組成。學習

  • 隨機分區
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt -output mydata/ -shuffle

將訓練數據 train.txt 從新洗牌存儲在 mydata/ 目錄下 train.txt.shuffled測試

  • 獲取每一個摺疊中的數據
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt.shuffled -output mydata/ -k 5

七、評估已訓練的模型

java -jar bin/RankLib.jar -load mymodel.txt -test MQ2008/Fold1/test.txt -metric2T ERR@10

八、模型對比

java -jar bin/RankLib.jar -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/baseline.ndcg.txt
java -jar bin/RankLib.jar -load ca.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/ca.ndcg.txt
java -jar bin/RankLib.jar -load lm.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/lm.ndcg.txt

輸出文件中包含了每條查詢的 NDCG@10 指標值,以及全部查詢的綜合指標,例如:ui

NDCG@10   170   0.0
NDCG@10   176   0.6722390270733757
NDCG@10   177   0.4772656487866462
NDCG@10   178   0.539003131276382
NDCG@10   185   0.6131471927654585
NDCG@10   189   1.0
NDCG@10   191   0.6309297535714574
NDCG@10   192   1.0
NDCG@10   194   0.2532778777010656
NDCG@10   197   1.0
NDCG@10   200   0.6131471927654585
NDCG@10   204   0.4772656487866462
NDCG@10   207   0.0
NDCG@10   209   0.123151194370365
NDCG@10   221   0.39038004999210174
NDCG@10   all   0.5193204478059303

而後再進行對比:

java -cp RankLib.jar ciir.umass.edu.eval.Analyzer -all output/ -base baseline.ndcg.txt > analysis.txt

對比結果 analysis.txt 以下:

Overall comparison
  ------------------------------------------------------------------------
  System  Performance     Improvement     Win     Loss    p-value
  baseline_ndcg.txt [baseline]    0.093
  LM_ndcg.txt     0.2863  +0.1933 (+207.8%)       9       1       0.03
  CA_ndcg.txt     0.5193  +0.4263 (+458.26%)      12      0       0.0

  Detailed break down
  ------------------------------------------------------------------------
             [ < -100%)  [-100%,-75%)  [-75%,-50%)  [-50%,-25%)  [-25%,0%)  (0%,+25%]  (+25%,+50%]  (+50%,+75%]  (+75%,+100%]  ( > +100%]
  LM_ndcg.txt    0        0           1            0            0         4            2            2            1            0
  CA_ndcg.txt    0             0            0            0            0        1            6            2            3            0

九、利用訓練模型重排名

java -jar RankLib.jar -load mymodel.txt -rank myResultLists.txt -score myScoreFile.txt

myScoreFile.txt 文件中只是增長了一列,表示從新計算的排名評分,須要本身另外根據該評分排序獲取新的排名順序。

1   0   -7.528650760650635
1   1   2.9022061824798584
1   2   -0.700125515460968
1   3   2.376657485961914
1   4   -0.29666265845298767
1   5   -2.038628101348877
1   6   -5.267711162567139
1   7   -2.022146463394165
1   8   0.6741248369216919
...

參考

RankLib wiki

相關文章
相關標籤/搜索