部分段落來自於http://javadoop.com/post/Abst...,他的文章至關不錯。java
ReentrantLock基於Sync內部類來完成鎖。Sync繼承於AbstractQueuedSynchronizer。Sync有兩個不一樣的子類NonfairSync和FairSync。node
ReentrantLock的大部分方法都是基於AbstractQueuedSynchronizer實現,大部分僅僅是對AbstractQueuedSynchronizer的轉發。所以,瞭解AbstractQueuedSynchronizer就很是重要。app
做爲AbstractQueuedSynchronizer的實現者須要實現isHeldExclusively,tryAcquire,tryRelease,(可選tryAcquireShared,tryReleaseShared)less
那麼咱們看看對於一個經常使用的套路,ReentrantLock是如何實現同步的oop
lock.lock(); try{ i++; }finally { lock.unlock(); }
lock.lock()內部實現爲調用了sync.lock(),以後又會調用NonfairSync或FairSync的lock(),你看果真重度使用了AQS吧,這裏咱們先記住這個位置,一會咱們還會回來分析。post
public void lock() { sync.lock(); }
先介紹一下AQS裏面的屬性,不復雜就4個主要的屬性:AQS裏面阻塞的節點是做爲隊列出現的,維護了一個head節點和tail節點,同時維護了一個阻塞狀態,若是state=0表示沒有鎖,若是state>0表示鎖被重入了幾回。
注意head是一個假節點,阻塞的節點是做爲head後面的節點出現的。
ui
// 頭結點,你直接把它當作 當前持有鎖的線程 多是最好理解的 private transient volatile Node head; // 阻塞的尾節點,每一個新的節點進來,都插入到最後,也就造成了一個隱視的鏈表 private transient volatile Node tail; // 這個是最重要的,不過也是最簡單的,表明當前鎖的狀態,0表明沒有被佔用,大於0表明有線程持有當前鎖 // 之因此說大於0,而不是等於1,是由於鎖能夠重入嘛,每次重入都加上1 private volatile int state; // 表明當前持有獨佔鎖的線程,舉個最重要的使用例子,由於鎖能夠重入 // reentrantLock.lock()能夠嵌套調用屢次,因此每次用這個來判斷當前線程是否已經擁有了鎖 // if (currentThread == getExclusiveOwnerThread()) {state++} private transient Thread exclusiveOwnerThread; //繼承自AbstractOwnableSynchronizer
接着看一下FairSync和NonfairSync的實現,FairSync和NonfairSync都繼承了Sync,並且Sync又繼承了AbstractQueuedSynchronizer。能夠看到FairSync和NonfairSync直接或間接的實現了isHeldExclusively,tryAcquire,tryRelease這三個方法。this
abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = -5179523762034025860L; /** * Performs {@link Lock#lock}. The main reason for subclassing * is to allow fast path for nonfair version. */ abstract void lock(); /** * Performs non-fair tryLock. tryAcquire is implemented in * subclasses, but both need nonfair try for trylock method. */ final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); //若是沒有鎖上,則設置爲鎖上並設置本身爲獨佔線程 if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } //若是鎖上了,並且獨佔線程是本身,那麼從新設置state+1,而且返回true else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } //不然返回false return false; } protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } protected final boolean isHeldExclusively() { // While we must in general read state before owner, // we don't need to do so to check if current thread is owner return getExclusiveOwnerThread() == Thread.currentThread(); } final ConditionObject newCondition() { return new ConditionObject(); } // Methods relayed from outer class final Thread getOwner() { return getState() == 0 ? null : getExclusiveOwnerThread(); } final int getHoldCount() { return isHeldExclusively() ? getState() : 0; } final boolean isLocked() { return getState() != 0; } /** * Reconstitutes the instance from a stream (that is, deserializes it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); setState(0); // reset to unlocked state } }
static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { //若是沒有人鎖上,那麼就設置我本身爲獨佔線程,不然再acquire一次 if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else //調用到了AQS的acquire裏面 acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } }
static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
以前咱們說到回到ReentrantLock的lock()調用了sync.lock();如今咱們回來看看非公平鎖的邏輯是:若是搶到鎖了,則設置本身的線程爲佔有鎖的線程,不然調用acquire(1),這個是AQS的方法。spa
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
acquire會調用tryAcquire,而這個是對於不一樣的實現是不同的,非公平鎖NonfairSync裏面的tryAcquire,而tryAcquire又會調用到Sync的nonfairTryAcquire。總之tryAcquire在非公平鎖場景下嘗試去獲取鎖,若是獲取上了,則置一下AQS狀態state,並設置本身爲獨佔線程,並支持重入鎖功能。線程
addWaiter方法用於建立一個節點(值爲當前線程)並維護一個雙向鏈表。
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
如今說一下Node的結構,主要有用的field爲waitStatus,prev,next,thread。waitStatus目前僅要了解1,0,-1就夠了。 0是默認狀態,1表明爭取鎖取消,-1表示它的後繼節點對應的線程須要被喚醒。也就是說這個waitStatus其實表明的不是本身的狀態,而是後繼節點的狀態。能夠看見默認進隊的節點的waitStatus都是0
static final class Node { /** Marker to indicate a node is waiting in shared mode */ // 標識節點當前在共享模式下 static final Node SHARED = new Node(); /** Marker to indicate a node is waiting in exclusive mode */ // 標識節點當前在獨佔模式下 static final Node EXCLUSIVE = null; // ======== 下面的幾個int常量是給waitStatus用的 =========== /** waitStatus value to indicate thread has cancelled */ // 代碼此線程取消了爭搶這個鎖 static final int CANCELLED = 1; /** waitStatus value to indicate successor's thread needs unparking */ // 官方的描述是,其表示當前node的後繼節點對應的線程須要被喚醒 static final int SIGNAL = -1; /** waitStatus value to indicate thread is waiting on condition */ // 本文不分析condition,因此略過吧 static final int CONDITION = -2; /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */ // 一樣的不分析,略過吧 static final int PROPAGATE = -3; // ===================================================== // 取值爲上面的一、-一、-二、-3,或者0(之後會講到) // 這麼理解,暫時只須要知道若是這個值 大於0 表明此線程取消了等待, // 也許就是說半天搶不到鎖,不搶了,ReentrantLock是能夠指定timeouot的。。。 volatile int waitStatus; // 前驅節點的引用 volatile Node prev; // 後繼節點的引用 volatile Node next; // 這個就是線程本尊 volatile Thread thread; }
acquireQueued的做用是從等待隊列中嘗試去把入隊的那個節點去作park。另外當節點unpark之後,也會在循環中將本身設置成頭結點,而後本身拿到鎖
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); //對於隊首節點,剛纔也許沒有搶到鎖,如今也許能搶到了,再試一次 if (p == head && tryAcquire(arg)) { //若是搶到了鎖,這個入隊的節點根本不須要park,直接能夠執行 setHead(node); p.next = null; // help GC failed = false; return interrupted; } //若是不是隊首節點,或者是隊首可是沒有搶過其餘節點 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
shouldParkAfterFailedAcquire。這個方法說的是:"當前線程沒有搶到鎖,是否須要掛起當前線程?第一個參數是前驅節點,第二個參數纔是表明當前線程的節點。注意由於默認加入的節點的狀態都是0,這個方法會進來兩次,第一次進來走到else分支裏面修改前置節點的waitStatus爲-1.第二次進來直接返回true。對於剛加入隊列的節點,修改head節點的waitStatus爲-1,對於後來加入的節點,修改它前一個節點的waitStatus爲-1。
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
parkAndCheckInterrupt的代碼很簡單,這個this就是ReentrantLock類的實例。阻塞了當前線程。
private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); }
再來看看怎麼解鎖。
public void unlock() { sync.release(1); }
調用到AQS裏面,若是鎖被徹底釋放了,那麼就unpark head的下一個
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; }
tryRelease是由Sync覆蓋的。重置AQS裏面的state,返回鎖是否被徹底釋放了的判斷。
protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; }
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ //下面的代碼就是喚醒後繼節點,可是有可能後繼節點取消了等待(waitStatus==1) // 從隊尾往前找,找到waitStatus<=0的全部節點中排在最前面的 Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
等到unpark之後,parkAndCheckInterrupt的阻塞解除,將繼續for無限循環,由於是隊列裏是一個一個阻塞的,此時阻塞節點的前置依次都是head,所以if (p == head && tryAcquire(arg)) 這句話若是它醒來搶鎖成功了將執行成功,阻塞的線程獲取鎖並執行,將本身設置成head,同時也將本身從隊列中清除出去。 注意這裏是非公平鎖,所以在tryAcquire有可能尚未搶過其餘線程,那麼搶到的那個將會直接執行,而沒有搶到的,又在循環裏鎖住了。