HDU-5853 Jong Hyok and String (廣義後綴自動機)

HDU-5853 Jong Hyok and String (廣義後綴自動機)

題意:給定一些串,每次查詢一個串,求全部的 (在全部串中\(endpos\)都與它相同的),(出如今給定串的)不一樣子串個數git

廣義後綴自動機?

是否是聽起來很高大上?函數

博主固然不明白原理,可是mo有關係spa

對於處理多個串的子串問題,把每一個串都加入同一個自動機,就能獲得廣義後綴自動機(?)code

這種容易出現重複節點的問題,不建議寫get

有兩種解決重複節點的辦法:先將串插入\(trie\)樹,再在\(trie\)樹上廣搜建\(SAM\)string

也能夠在插入函數內部直接特判掉it

void Extend(int c) {
    int p=lst;
    if(trans[p][c]) {
        int q=trans[p][c];
        if(len[q]==len[p]+1) lst=q; 
        else {
            int clone=++stcnt;
            memcpy(trans[clone],trans[q],sizeof trans[q]);
            len[clone]=len[p]+1;
            link[clone]=link[q];
            while(~p && trans[p][c]==q) trans[p][c]=clone,p=link[p];
            lst=link[q]=clone;
        }
        return;
    }
    int cur=++stcnt;
    len[cur]=len[p]+1;
    while(~p && !trans[p][c]) trans[p][c]=cur,p=link[p];
    if(p==-1) link[cur]=0;
    else {
        int q=trans[p][c];
        if(len[q]==len[p]+1) link[cur]=q;
        else {
            int clone=++stcnt;
            memcpy(trans[clone],trans[q],sizeof trans[q]);
            len[clone]=len[p]+1;
            link[clone]=link[q];
            while(~p && trans[p][c]==q) trans[p][c]=clone,p=link[p];
            link[cur]=link[q]=clone;
        }
    }
    lst=cur;
}

若是你願意聽隊爺講解:參考文獻-2015集訓隊論文 提取碼:6f4uio

\[ \ \]class

構造廣義後綴自動機後原理

實際上就是求給定串在原串中對應的狀態包含的子串個數

代碼裏是建\(trie\)樹版的

#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
using namespace std;

#define reg register
typedef long long ll;
#define rep(i,a,b) for(int i=a,i##end=b;i<=i##end;++i)
#define drep(i,a,b) for(int i=a,i##end=b;i>=i##end;--i)

#define pb push_back
template <class T> inline void cmin(T &a,T b){ ((a>b)&&(a=b)); }
template <class T> inline void cmax(T &a,T b){ ((a<b)&&(a=b)); }

char IO;
template<class T=int> T rd(){
    T s=0;
    int f=0;
    while(!isdigit(IO=getchar())) if(IO=='-') f=1;
    do s=(s<<1)+(s<<3)+(IO^'0');
    while(isdigit(IO=getchar()));
    return f?-s:s;
}

const int N=2e5+10;

bool be;

int n,m;
char s[N/2];
int trans[N][26],link[N],len[N],stcnt,lst;
int trie[N/2][26],cnt;

void Insert(char *s){
    int now=0,len=strlen(s+1);
    rep(i,1,len) { 
        int c=s[i]-'a';
        if(!trie[now][c]) trie[now][c]=++cnt;
        now=trie[now][c];
    }
}

void Init(){
    link[0]=-1,len[0]=0;
    rep(i,0,stcnt) rep(j,0,25) trans[i][j]=0;
    rep(i,0,cnt) rep(j,0,25) trie[i][j]=0;
    stcnt=lst=cnt=0;
}

void Extend(int c) {
    int p=lst,cur=++stcnt;
    len[cur]=len[p]+1;
    while(~p && !trans[p][c]) trans[p][c]=cur,p=link[p];
    if(p==-1) link[cur]=0;
    else {
        int q=trans[p][c];
        if(len[q]==len[p]+1) link[cur]=q;
        else {
            int clone=++stcnt;
            memcpy(trans[clone],trans[q],104);
            len[clone]=len[p]+1;
            link[clone]=link[q];
            while(~p && trans[p][c]==q) trans[p][c]=clone,p=link[p];
            link[cur]=link[q]=clone;
        }
    }
    lst=cur;
}

typedef pair<int,int> Pii;
queue <Pii> que;
void Construct(){
    que.push((Pii){0,0});
    while(!que.empty()) {
        Pii u=que.front(); que.pop();
        rep(i,0,25) if(trie[u.first][i]) { // 先構造trie樹
            lst=u.second;
            Extend(i);
            que.push((Pii){trie[u.first][i],lst});
        }
    }
}

bool ed;

int main(){
    rep(kase,1,rd()) {
        n=rd(),m=rd();
        Init();
        rep(i,1,n) {
            scanf("%s",s+1); 
            Insert(s);
        }
        Construct();
        printf("Case #%d:\n",kase);
        rep(i,1,m) {
            scanf("%s",s+1);
            int p=0,len=strlen(s+1);
            rep(j,1,len) {
                p=trans[p][s[j]-'a'];
                if(!p) break;
            }
            if(!p) puts("0");
            else printf("%d\n",::len[p]-::len[link[p]]);
        }
    }
}
相關文章
相關標籤/搜索