<p>由於DL4J依賴線性代數庫全部,不一樣的系統首先須要安裝的文件是不一樣的?</p> <p>OSX 蘋果已經自帶了</p> <p><strong><font style="background-color: #ffffff" color="#ff0000">Fedora/RHEL</font></strong>         yum -y install blas</p> <p><strong><font color="#ff0000">Ubuntu Linux</font></strong>        apt-get install libblas* (credit to @sujitpal)</p> <p><font color="#ff0000"><strong>Windows</strong></font>               See <a href="http://icl.cs.utk.edu/lapack-for-windows/lapack/">http://icl.cs.utk.edu/lapack-for-windows/lapack/</a></p> <p><b>1 </b><b>如何在Windows</b><b>上面安裝Lapack</b></p> <p>第一步:下載須要的軟件</p> <p><b>1) </b><b><a href="http://netlib.org/lapack/lapack.tgz">lapack.tgz</a></b></p> <p><b>2) </b><b><a href="http://www.cmake.org/">CMAKE </a></b></p> <p><b>3) </b><b><a href="http://www.mingw.org/">MinGW 32 bits</a></b> or <b><a href="http://mingw-w64.sourceforge.net/">MinGW-w64</a></b></p> <p>而後逐一安裝它們,須要注意在安裝 MinGW 的時候,要選擇GCC模塊。</p> <p>第二步:編譯lapack</p> <p>打開cmake,輸入 lapack.tgz 解壓目錄做爲source目錄</p> <p>隨便填寫一個你想要編譯完成的目錄。點擊configure –> 點擊 generate。</p> <p><a href="http://static.oschina.net/uploads/img/201504/20111111_BK29.jpg"><img title="clip_image002" style="border-top: 0px; border-right: 0px; background-image: none; border-bottom: 0px; padding-top: 0px; padding-left: 0px; margin: 0px; border-left: 0px; display: inline; padding-right: 0px" border="0" alt="clip_image002" src="http://static.oschina.net/uploads/img/201504/20111112_25Iy.jpg" width="213" height="244" /></a></p> <p><b>2 </b><b>安裝Anaconda</b></p> <p><b><a href="http://static.oschina.net/uploads/img/201504/20111114_LH1m.jpg"><img title="clip_image004" style="border-top: 0px; border-right: 0px; background-image: none; border-bottom: 0px; padding-top: 0px; padding-left: 0px; border-left: 0px; display: inline; padding-right: 0px" border="0" alt="clip_image004" src="http://static.oschina.net/uploads/img/201504/20111115_W5Z3.jpg" width="244" height="190" /></a></b></p> <p>因爲DL4J的數據可視化和調試採用跨平臺的工具來呼叫Python程式,您也必需要擁有Anaconda科學計算包(http://continuum.io/downloads)。安裝了Anaconda科學計算包後,您能夠經過Python窗口中輸入如下文本以測試您是擁有否有必要的科學計算包:</p> <blockquote> <p><b><font color="#0000ff">import numpy</font></b></p> </blockquote> <blockquote> <p><b><font color="#0000ff">import pylab as pl</font></b></p> </blockquote> <p>當您在訓練神經網絡時,這些工具將產生可視化以便讓您能調試神經網絡。 若是您看到正常化分佈,這將會是一個好兆頭。這些可視化偶爾會在蘋果操做系統上產生錯誤,但這並不會使神經網絡的訓練中止。</p> <p><b>3 </b><b>接下來下載DL4J</b><b>的示例代碼</b></p> <blockquote> <p><code></code><font color="#0000ff"><b>git clone https://github.com/SkymindIO/dl4j-examples</b><b></b></font></p> </blockquote> <p><b>4 </b><b>示例代碼導入eclipse</b><b>而且添加maven</b><b>依賴</b></p>git