Python學習之多進程併發模塊(multiprocessing)

Python提供了很是好用的多進程包multiprocessing,你只須要定義一個函數,Python會替你完成其餘全部事情。藉助這個包,能夠輕鬆完成從單進程到併發執行的轉換。併發

一、新建單一進程app

若是咱們新建少許進程,能夠以下:async

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)

if __name__ == "__main__":
    p = multiprocessing.Process(target=func, args=("hello", ))
    p.start()
    p.join()
    print "Sub-process done."

 

1
2
3
4
5
6
7
8
9
10
11
12
13
import multiprocessing
import time
 
def func(msg):
    for i in xrange(3):
    print msg
    time.sleep(1)
 
if __name__ == "__main__":
    p = multiprocessing.Process(target=func, args=("hello", ))
    p.start()
    p.join()
    print "Sub-process done."

二、使用進程池函數

是的,你沒有看錯,不是線程池。它能夠讓你跑滿多核CPU,並且使用方法很是簡單。spa

注意要用apply_async,若是落下async,就變成阻塞版本了。線程

processes=4是最多併發進程數量。code

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    for i in xrange(10):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))
    pool.close()
    pool.join()
    print "Sub-process(es) done."

三、使用Pool,並須要關注結果blog

更多的時候,咱們不只須要多進程執行,還須要關注每一個進程的執行結果,以下:進程

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)
    return "done " + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(10):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print res.get()
    print "Sub-process(es) done."
相關文章
相關標籤/搜索