語音識別之梅爾頻譜倒數MFCC(Mel Frequency Cepstrum Coefficient)

語音識別之梅爾頻譜倒數MFCC(Mel Frequency Cepstrum Coefficient)

原理

  1. 梅爾頻率倒譜系數:必定程度上模擬了人耳對語音的處理特色
  2. 預加劇:在語音信號中,高頻部分的能量通常比較低,信號不利於處理,提升高頻部分的能量能更好的處理
  3. 分幀:在比較短的時間內,語音信號不會發生突變,利於處理
  4. 加窗:幀內信號在後序FFT變換的時候不會出現端點突變的狀況,較好地獲得頻譜
  5. 補零:FFT的要求輸入數據須要知足2^k個點
  6. 計算能量譜:對語音信號最好的分析在其功率譜
  7. 計算梅爾頻譜:梅爾頻譜體現人耳對語音的特色
  8. 離散餘弦變換:計算梅爾倒譜,易於觀察
  9. 歸一化:易於縱觀整個語音信號的特色

過程

流程圖:
從 人聲的模擬信號 獲得 MFCC的梅爾倒譜
流程圖ios

  • 錄音獲得人聲音頻信號,保存到本地
%%
% r = audiorecorder(16000, 16, 1);
% record(r); % servel seconds
% stop(r);
% mySpeech = getaudiodata(r);
% figure;plot(mySpeech);title('mySpeech');
%%
mySpeech = wavread('mySpeech.wav', 'native');
figure;plot(mySpeech);title('mySpeech');
SizeOfmySpeech = size(mySpeech, 1);
for i = 2 : SizeOfmySpeech
   mySpeech(i) = mySpeech(i) - 0.95 * mySpeech(i-1);
end
figure;plot(mySpeech);title('mySpeech_fix');

錄音的要求是採用率爲16000Hz,量化爲16bit數據結構

  • 讀取本地語音文件
ret_value temp;
short waveData2[60000];

int main()
{
    load_wave_file("mySpeech.wav", &temp, waveData2);
    return 0;
}

總共有60000個採樣點函數

  • 設置窗函數(海明窗、漢寧窗、布拉克曼窗)

窗函數

void setHammingWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.54 - 0.46*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1));
    }
}

void setHanningWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.5 - 0.5*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1));
    }
}

void setBlackManWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.42 - 0.5*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1)) 
                                    + 0.08*cos(4 * PI*i / (FRAMES_PER_BUFFER - 1));
    }
}

這次選取的是海明窗spa

  • 分幀加窗操做

分幀

// 加窗操做
int seg_shift = (i - 1) * NOT_OVERLAP;
for(j = 0; j < FRAMES_PER_BUFFER && (seg_shift + j) < numSamples; j++){
    afterWin[j] = spreemp[seg_shift + j] * frameWindow[j];
}

每次分幀,數據點變爲400個點3d

  • 補零操做
// 知足FFT爲2^n個點,補零操做
for(int k = j - 1; k < LEN_SPECTRUM; k++){
    afterWin[k] = 0;
}

知足fft操做須要,補零至512個點code

  • 計算能量譜
void FFT_Power(float* in, float* energySpectrum){
    fftwf_complex* out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*LEN_SPECTRUM);
    fftwf_plan p = fftwf_plan_dft_r2c_1d(LEN_SPECTRUM, in, out, FFTW_ESTIMATE);
    fftwf_execute(p);
    for(int i = 0; i < LEN_SPECTRUM; i++){
        energySpectrum[i] = out[i][0] * out[i][0] + out[i][1] * out[i][1];
    }
    fftwf_destroy_plan(p);
    fftwf_free(out);
}

這裏用到了MIT大學的開源FFT變換庫fftw3.h,快速計算能量譜(能夠搜索下載根據本身的IDE配置)orm

  • 計算梅爾譜

梅爾譜1

void computeMel(float* mel, int sampleRate, const float* energySpectrum){
    int fmax = sampleRate / 2;
    float maxMelFreq = 1125 * log(1 + fmax / 700);

梅爾譜2

// 計算頻譜到梅爾譜的映射關係
for(int i = 0; i < NUM_FILTER + 2; i++){
    m[i] = i*delta;
    h[i] = 700 * (exp(m[i] / 1125) - 1);
    f[i] = floor((256 + 1)*h[i] / sampleRate);
}

梅爾譜3

// 梅爾濾波
for(int i = 0; i < NUM_FILTER; i++){
    for(int j = 0; j < 256; j++){
        if(j >= melFilters[i][0] && j <= melFilters[i][1]){
            mel[i] += ((j - melFilters[i][0]) / (melFilters[i][1] - melFilters[i][0]))*energySpectrum[j];
        }
        else if(j > melFilters[i][1] && j <= melFilters[i][2]){
            mel[i] += ((melFilters[i][2] - j) / (melFilters[i][2] - melFilters[i][1]))*energySpectrum[j];
        }
    }
}

一共選擇了40個三角濾波器,最後的梅爾譜也是40個點blog

  • 計算梅爾倒譜
    梅爾倒譜1
    梅爾倒譜2
void DCT(const float* mel, float* melRec){
    for(int i = 0; i < LEN_MELREC; i++){
        for(int j = 0; j < NUM_FILTER; j++){
            if(mel[j] <= -0.0001 || mel[j] >= 0.0001){
                melRec[i] += log(mel[j])*cos(PI*i / (2 * NUM_FILTER)*(2 * j + 1));
            }
        }
    }
}

把40個點的梅爾譜映射到13維的倒譜上。取對數作離散餘弦變換內存

  • 歸一化處理
    歸一化1
    歸一化2
// 歸一化處理
for(int i = 0; i < LEN_MELREC; i++){
    sumMelRec[i] = sqrt(sumMelRec[i] / numFrames);
}
fstream fout("All_MelRec.txt", ios::out);
fstream fout2("All_MelRec_Bef.txt", ios::out);
for(int i = 0; i < numFrames; i++){
    for(int j = 0; j < LEN_MELREC; j++){
        fout2 << mulMelRec[i][j] << " ";
        mulMelRec[i][j] /= sumMelRec[j];
        fout << mulMelRec[i][j] << " ";
    }
    fout << endl;
    fout2 << endl;
}

使得最終的結果數據聚攏,易於觀察ci

  • 繪圖輸出結果(以原始數據爲例,和最終結果爲例)
%% 讀取原始音頻文件
fidin = fopen('wavData.txt', 'r');
len_waveData = fscanf(fidin, '%d', 1);
waveData = zeros(len_waveData, 1);
for i = 1 : 1 : len_waveData
   waveData(i) = fscanf(fidin, '%d', 1);
end
fclose(fidin);
subplot(2, 3, 1); plot(1:len_waveData, waveData);
axis([0 400 -2 2]);
title('原始音頻文件');
%% 梅爾倒譜的色域
A = load('All_MelRec_Bef.txt');
figure;
imagesc(A'); hold on
colorbar;
title('梅爾倒譜的色域');
%% 梅爾倒譜的色域(歸一化)
B = load('All_MelRec.txt');
figure;
imagesc(B'); hold on
colorbar;
title('梅爾倒譜的色域(歸一化)');

其他輸出操做是相同的,操做見最後的完整代碼

結果

錄音後的原始音頻信號
原始音頻
總共有6000個採樣點,量化爲16bit,所以數據量級能達到10^4

MFCC操做中,第五幀的結果流程
流程

原始音頻分幀後,每一幀是400的點,從結果來看,在一幀的時間長度裏面,數據變化不大,幅值維持在 [-1 1] 之間浮動。(如選取其餘幀能夠看到變化比較明顯,看看原始音頻就知道了)
加窗操做後,端點值被明顯收斂到0,所以不會對能量譜的計算產生突變的狀況。
能量譜和梅爾譜能夠看出,與咱們已知的人聲特色相關。
歸一化以前的梅爾倒譜
輸出1
高頻能量集中在較低的維度,和能量譜的顯示吻合
歸一化的梅爾倒譜
輸出2
歸一化以後,相比未歸一化的圖,較高維度的能量可以較好地被分辨出來,易於分析

至此,梅爾倒譜工做完成。

完整代碼

matlab錄音文件 main.m

clear all
close all
clc
%%
% r = audiorecorder(16000, 16, 1);
% record(r); % servel seconds
% stop(r);
% mySpeech = getaudiodata(r);
% figure;plot(mySpeech);title('mySpeech');
%%
mySpeech = wavread('mySpeech.wav', 'native');
figure;plot(mySpeech);title('mySpeech');
SizeOfmySpeech = size(mySpeech, 1);
for i = 2 : SizeOfmySpeech
   mySpeech(i) = mySpeech(i) - 0.95 * mySpeech(i-1);
end
figure;plot(mySpeech);title('mySpeech_fix');

C++主函數文件 main.cpp

#include<iostream>
#include "fftw3.h"
#include"MFCC.h"
#include"wav.h"
using namespace std;

int wavLen;
double waveData[60000];

ret_value temp;
short waveData2[60000];

int main()
{
    /*wavLen = wavread("mySpeech.txt", waveData);
    if(wavLen == -1)
        exit(0);*/
    load_wave_file("mySpeech.wav", &temp, waveData2);
    MFCC(waveData2, 60000, 16000);
    system("pause");
    return 0;
}

C++音頻定義頭文件 wav.h

#ifndef _WAV_H
#define _WAV_H

#define MAXDATA (512*400)  //通常採樣數據大小,語音文件的數據不能大於該數據
#define SFREMQ (16000)   //採樣數據的採樣頻率8khz
#define NBIT 16

typedef struct WaveStruck{//wav數據結構
    //data head
    struct HEAD{
        char cRiffFlag[4];
        int nFileLen;
        char cWaveFlag[4];//WAV文件標誌
        char cFmtFlag[4];
        int cTransition;
        short nFormatTag;
        short nChannels;
        int nSamplesPerSec;//採樣頻率,mfcc爲8khz
        int nAvgBytesperSec;
        short nBlockAlign;
        short nBitNumPerSample;//樣本數據位數,mfcc爲12bit
    } head;

    //data block
    struct BLOCK{
        char cDataFlag[4];//數據標誌符(data)
        int nAudioLength;//採樣數據總數
    } block;
} WAVE;

int wavread(char* filename, double* destination);

struct ret_value
{
    char *data;
    unsigned long size;
    ret_value()
    {
        data = 0;
        size = 0;
    }
};

void load_wave_file(char *fname, struct ret_value *ret, short* waveData2);

#endif

C++音頻實現文件 wav.cpp

#include"wav.h"
#include<cstdio>
#include<cstring>
#include<malloc.h>

int wavread(char* filename, double* destination){
    WAVE wave[1];
    FILE * f;
    f = fopen(filename, "rb");
    if(!f)
    {
        printf("Cannot open %s for reading\n", filename);
        return -1;
    }

    //讀取wav文件頭而且分析
    fread(wave, 1, sizeof(wave), f);

    if(wave[0].head.cWaveFlag[0] == 'W'&&wave[0].head.cWaveFlag[1] == 'A'
        &&wave[0].head.cWaveFlag[2] == 'V'&&wave[0].head.cWaveFlag[3] == 'E')//判斷是不是wav文件
    {
        printf("It's not .wav file\n");
        return -1;
    }
    if(wave[0].head.nSamplesPerSec != SFREMQ || wave[1].head.nBitNumPerSample != NBIT)//判斷是否採樣頻率是16khz,16bit量化
    {
        printf("It's not 16khz and 16 bit\n");
        return -1;
    }

    if(wave[0].block.nAudioLength>MAXDATA / 2)//wav文件不能太大,爲sample長度的一半
    {
        printf("wav file is to long\n");
        return -1;
    }

    //讀取採樣數據 
    fread(destination, sizeof(char), wave[0].block.nAudioLength, f);
    fclose(f);

    return wave[0].block.nAudioLength;
}

void load_wave_file(char *fname, struct ret_value *ret, short* waveData2)
{
    FILE *fp;
    fp = fopen(fname, "rb");
    if(fp)
    {
        char id[5];          // 5個字節存儲空間存儲'RIFF'和'\0',這個是爲方便利用strcmp
        unsigned long size;  // 存儲文件大小
        short format_tag, channels, block_align, bits_per_sample;    // 16位數據
        unsigned long format_length, sample_rate, avg_bytes_sec, data_size; // 32位數據
        fread(id, sizeof(char), 4, fp); // 讀取'RIFF'
        id[4] = '\0';

        if(!strcmp(id, "RIFF"))
        {
            fread(&size, sizeof(unsigned long), 1, fp); // 讀取文件大小
            fread(id, sizeof(char), 4, fp);         // 讀取'WAVE'
            id[4] = '\0';
            if(!strcmp(id, "WAVE"))
            {
                fread(id, sizeof(char), 4, fp);     // 讀取4字節 "fmt ";
                fread(&format_length, sizeof(unsigned long), 1, fp);
                fread(&format_tag, sizeof(short), 1, fp); // 讀取文件tag
                fread(&channels, sizeof(short), 1, fp);    // 讀取通道數目
                fread(&sample_rate, sizeof(unsigned long), 1, fp);   // 讀取採樣率大小
                fread(&avg_bytes_sec, sizeof(unsigned long), 1, fp); // 讀取每秒數據量
                fread(&block_align, sizeof(short), 1, fp);     // 讀取塊對齊
                fread(&bits_per_sample, sizeof(short), 1, fp);       // 讀取每同樣本大小
                fread(id, sizeof(char), 4, fp);                      // 讀入'data'
                fread(&data_size, sizeof(unsigned long), 1, fp);     // 讀取數據大小
                ret->size = data_size;
                ret->data = (char*)malloc(sizeof(char)*data_size); // 申請內存空間
                //fread(ret->data, sizeof(char), data_size, fp);       // 讀取數據
                fread(waveData2, sizeof(short), data_size, fp); // my fix
            }
            else
            {
                printf("Error: RIFF file but not a wave file\n");
            }
        }
        else
        {
            printf("Error: not a RIFF file\n");
        }
    }
}

C++實現MFCC.h

#ifndef _MFCC_H
#define _MFCC_H

#define FRAMES_PER_BUFFER 400
#define NOT_OVERLAP 200
#define NUM_FILTER 40
#define PI 3.1415926
#define LEN_SPECTRUM 512
#define LEN_MELREC 13

void MFCC(const short* waveData, int numSamples, int sampleRate);
void preEmphasizing(const short* waveData, float* spreemp, int numSamples, float heavyFactor);
void setHammingWindow(float* frameWindow);
void setHanningWindow(float* frameWindow);
void setBlackManWindow(float* frameWindow);
void FFT_Power(float* in, float* energySpectrum);
void computeMel(float* mel, int sampleRate, const float* energySpectrum);
void DCT(const float* mel, float* melRec);

#endif

C++實現MFCC.cpp

#include"MFCC.h"
#include"fftw3.h"
#include<cmath>
#include<cstring>
#include<fstream>
#include<string>
using namespace std;

template<class T> void print_Array(T* arr, int len, string filename);
#define TORPINT true
#define PRINT_FRAME 100

float mulMelRec[500][LEN_MELREC];

void MFCC(const short* waveData, int numSamples, int sampleRate){
    if(TORPINT) print_Array(waveData, 60000, "wavDataAll.txt");
    // 預加劇
    float* spreemp = new float[numSamples];
    preEmphasizing(waveData, spreemp, numSamples, -0.95);
    if(TORPINT) print_Array(waveData, 60000, "spreempAll.txt");
    // 計算幀的數量
    int numFrames = ceil((numSamples - FRAMES_PER_BUFFER) / NOT_OVERLAP) + 1;
    // 申請內存
    float* frameWindow = new float[FRAMES_PER_BUFFER];
    float* afterWin = new float[LEN_SPECTRUM];
    float* energySpectrum = new float[LEN_SPECTRUM];
    float* mel = new float[NUM_FILTER];
    float* melRec = new float[LEN_MELREC];
    /*float** mulMelRec = new float*[numFrames + 200];
    for(int i = 0; i < numFrames; i++){
        mulMelRec[i] = new float[LEN_MELREC];
    }*/
    float* sumMelRec = new float[LEN_MELREC];
    memset(sumMelRec, 0, sizeof(float)*LEN_MELREC);
    memset(mulMelRec, 0, sizeof(float)*numFrames*LEN_MELREC);
    // 設置窗參數
    setHammingWindow(frameWindow);
    //setHanningWindow(frameWindow);
    //setBlackManWindow(frameWindow);
    // 幀操做
    for(int i = 0; i < numFrames; i++){
        if(TORPINT && i == PRINT_FRAME) print_Array(waveData, FRAMES_PER_BUFFER, "wavData.txt");
        if(TORPINT && i == PRINT_FRAME) print_Array(waveData, FRAMES_PER_BUFFER, "spreemp.txt");
        int j;
        // 加窗操做
        int seg_shift = (i - 1) * NOT_OVERLAP;
        for(j = 0; j < FRAMES_PER_BUFFER && (seg_shift + j) < numSamples; j++){
            afterWin[j] = spreemp[seg_shift + j] * frameWindow[j];
        }
        // 知足FFT爲2^n個點,補零操做
        for(int k = j - 1; k < LEN_SPECTRUM; k++){
            afterWin[k] = 0;
        }
        if(TORPINT && i == PRINT_FRAME)
            print_Array(afterWin, LEN_SPECTRUM, "After.txt");
        // 計算能量譜
        FFT_Power(afterWin, energySpectrum);
        if(TORPINT && i == PRINT_FRAME)
            print_Array(energySpectrum, LEN_SPECTRUM, "energySpectrum.txt");
        // 計算梅爾譜
        memset(mel, 0, sizeof(float)*NUM_FILTER);
        computeMel(mel, sampleRate, energySpectrum);
        if(TORPINT && i == PRINT_FRAME)
            print_Array(mel, NUM_FILTER, "mel.txt");
        // 計算離散餘弦變換
        memset(melRec, 0, sizeof(float)*LEN_MELREC);
        DCT(mel, melRec);
        if(TORPINT && i == PRINT_FRAME)
            print_Array(melRec, LEN_MELREC, "melRec.txt");
        // 累計總值
        for(int p = 0; p < LEN_MELREC; p++){
            mulMelRec[i][p] = melRec[p];
            sumMelRec[p] += melRec[p] * melRec[p];
        }
    }
    // 歸一化處理
    for(int i = 0; i < LEN_MELREC; i++){
        sumMelRec[i] = sqrt(sumMelRec[i] / numFrames);
    }
    fstream fout("All_MelRec.txt", ios::out);
    fstream fout2("All_MelRec_Bef.txt", ios::out);
    for(int i = 0; i < numFrames; i++){
        for(int j = 0; j < LEN_MELREC; j++){
            fout2 << mulMelRec[i][j] << " ";
            mulMelRec[i][j] /= sumMelRec[j];
            fout << mulMelRec[i][j] << " ";
        }
        fout << endl;
        fout2 << endl;
    }
    fout.close();
    fout2.close();

    // 釋放內存
    delete[] spreemp;
    delete[] frameWindow;
    delete[] afterWin;
    delete[] energySpectrum;
    delete[] mel;
    delete[] melRec;
    delete[] sumMelRec;
    /*for(int i = 0; i < LEN_MELREC; i++){
        delete[] mulMelRec[i];
    }
    delete[] mulMelRec;*/
}

void preEmphasizing(const short* waveData, float* spreemp, int numSamples, float heavyFactor){
    spreemp[0] = (float)waveData[0];
    for(int i = 1; i < numSamples; i++){
        spreemp[i] = waveData[i] + heavyFactor * waveData[i - 1];
    }
}

void setHammingWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.54 - 0.46*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1));
    }
}

void setHanningWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.5 - 0.5*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1));
    }
}

void setBlackManWindow(float* frameWindow){
    for(int i = 0; i < FRAMES_PER_BUFFER; i++){
        frameWindow[i] = 0.42 - 0.5*cos(2 * PI * i / (FRAMES_PER_BUFFER - 1)) 
                                    + 0.08*cos(4 * PI*i / (FRAMES_PER_BUFFER - 1));
    }
}

void FFT_Power(float* in, float* energySpectrum){
    fftwf_complex* out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*LEN_SPECTRUM);
    fftwf_plan p = fftwf_plan_dft_r2c_1d(LEN_SPECTRUM, in, out, FFTW_ESTIMATE);
    fftwf_execute(p);
    for(int i = 0; i < LEN_SPECTRUM; i++){
        energySpectrum[i] = out[i][0] * out[i][0] + out[i][1] * out[i][1];
    }
    fftwf_destroy_plan(p);
    fftwf_free(out);
}

void computeMel(float* mel, int sampleRate, const float* energySpectrum){
    int fmax = sampleRate / 2;
    float maxMelFreq = 1125 * log(1 + fmax / 700);
    int delta = (int)(maxMelFreq / (NUM_FILTER + 1));
    // 申請空間
    float** melFilters = new float*[NUM_FILTER];
    for(int i = 0; i < NUM_FILTER; i++){
        melFilters[i] = new float[3];
    }
    float* m = new float[NUM_FILTER + 2];
    float* h = new float[NUM_FILTER + 2];
    float* f = new float[NUM_FILTER + 2];
    // 計算頻譜到梅爾譜的映射關係
    for(int i = 0; i < NUM_FILTER + 2; i++){
        m[i] = i*delta;
        h[i] = 700 * (exp(m[i] / 1125) - 1);
        f[i] = floor((256 + 1)*h[i] / sampleRate);
    }
    // 計算梅爾濾波參數
    for(int i = 0; i < NUM_FILTER; i++){
        for(int j = 0; j < 3; j++){
            melFilters[i][j] = f[i + j];
        }
    }
    // 梅爾濾波
    for(int i = 0; i < NUM_FILTER; i++){
        for(int j = 0; j < 256; j++){
            if(j >= melFilters[i][0] && j <= melFilters[i][1]){
                mel[i] += ((j - melFilters[i][0]) / (melFilters[i][1] - melFilters[i][0]))*energySpectrum[j];
            }
            else if(j > melFilters[i][1] && j <= melFilters[i][2]){
                mel[i] += ((melFilters[i][2] - j) / (melFilters[i][2] - melFilters[i][1]))*energySpectrum[j];
            }
        }
    }
    // 釋放內存
    for(int i = 0; i < 3; i++){
        delete[] melFilters[i];
    }
    delete[] melFilters;
    delete[] m;
    delete[] h;
    delete[] f;
}

void DCT(const float* mel, float* melRec){
    for(int i = 0; i < LEN_MELREC; i++){
        for(int j = 0; j < NUM_FILTER; j++){
            if(mel[j] <= -0.0001 || mel[j] >= 0.0001){
                melRec[i] += log(mel[j])*cos(PI*i / (2 * NUM_FILTER)*(2 * j + 1));
            }
        }
    }
}

template<class T> 
void print_Array(T* arr, int len, string filename){
    fstream fout(filename, ios::out);
    fout << len << endl;
    for(int i = 0; i < len; i++){
        fout << arr[i] << " ";
    }
    fout << endl;
    fout.close();
    return;
}

Matlab實現輸出觀察文件 Matlab_print.m

clear all
close all
clc
%% 原始音頻全部
fidin = fopen('wavDataAll.txt', 'r');
len_waveData = fscanf(fidin, '%d', 1);
waveData = zeros(len_waveData, 1);
for i = 1 : 1 : len_waveData
   waveData(i) = fscanf(fidin, '%d', 1);
end
fclose(fidin);
subplot(2, 3, 1); plot(1:len_waveData, waveData);
title('原始音頻文件');
fidin = fopen('spreempAll.txt', 'r');
len_spreemp = fscanf(fidin, '%d', 1);
spreemp = zeros(len_spreemp, 1);
for i = 1 : 1 : len_spreemp
   spreemp(i) = fscanf(fidin, '%d', 1);
end
fclose(fidin);
subplot(2, 3, 2); plot(1:len_spreemp, waveData);
title('預加劇音頻文件');
figure;
%% 讀取原始音頻文件
fidin = fopen('wavData.txt', 'r');
len_waveData = fscanf(fidin, '%d', 1);
waveData = zeros(len_waveData, 1);
for i = 1 : 1 : len_waveData
   waveData(i) = fscanf(fidin, '%d', 1);
end
fclose(fidin);
subplot(2, 3, 1); plot(1:len_waveData, waveData);
axis([0 400 -2 2]);
title('原始音頻文件');
%% 讀取預加劇的音頻
fidin = fopen('spreemp.txt', 'r');
len_spreemp = fscanf(fidin, '%d', 1);
spreemp = zeros(len_spreemp, 1);
for i = 1 : 1 : len_spreemp
   spreemp(i) = fscanf(fidin, '%d', 1);
end
fclose(fidin);
subplot(2, 3, 2); plot(1:len_spreemp, waveData);
axis([0 400 -2 2]);
title('預加劇音頻文件');
%% 加窗操做
fidin = fopen('After.txt', 'r');
len_AfterWin = fscanf(fidin, '%d', 1);
AfterWin = zeros(len_AfterWin, 1);
for i = 1 : 1 : len_AfterWin
   AfterWin(i) = fscanf(fidin, '%f', 1);
end
fclose(fidin);
subplot(2, 3, 3); plot(1:len_AfterWin, AfterWin); grid on
title('加窗操做');
%% 能量譜
fidin = fopen('energySpectrum.txt', 'r');
len_energySpectrum = fscanf(fidin, '%d', 1);
energySpectrum = zeros(len_energySpectrum, 1);
for i = 1 : 1 : len_energySpectrum
   energySpectrum(i) = fscanf(fidin, '%f', 1);
end
fclose(fidin);
subplot(2, 3, 4); plot(1:len_energySpectrum, energySpectrum); grid on
title('能量譜');
%% 梅爾譜
fidin = fopen('mel.txt', 'r');
len_mel = fscanf(fidin, '%d', 1);
mel = zeros(len_mel, 1);
for i = 1 : 1 : len_mel
   mel(i) = fscanf(fidin, '%f', 1);
end
fclose(fidin);
subplot(2, 3, 5); plot(1:len_mel, mel); grid on
title('梅爾譜');
%% 梅爾倒譜
fidin = fopen('melRec.txt', 'r');
len_melRec = fscanf(fidin, '%d', 1);
melRec = zeros(len_melRec, 1);
for i = 1 : 1 : len_melRec
   melRec(i) = fscanf(fidin, '%f', 1);
end
fclose(fidin);
subplot(2, 3, 6); stem(1:len_melRec, melRec); grid on
title('梅爾倒譜');
%% 梅爾倒譜的色域
A = load('All_MelRec_Bef.txt');
figure;
imagesc(A'); hold on
colorbar;
title('梅爾倒譜的色域');
%% 梅爾倒譜的色域(歸一化)
B = load('All_MelRec.txt');
figure;
imagesc(B'); hold on
colorbar;
title('梅爾倒譜的色域(歸一化)');
相關文章
相關標籤/搜索