spark sql 能夠經過標準的jdbc鏈接數據庫,得到數據源java
public class SparkSql { public static SimpleDateFormat sdf = new SimpleDateFormat("_yyyyMMdd_HH_mm_ss"); private static final String appName = "spark sql test"; private static final String master = "spark://192.168.1.21:7077"; private static final String JDBCURL = "jdbc:mysql://192.168.1.18:3306/lng?user=root&password=123456"; public static void main(String[] avgs){ SparkContext context = new SparkContext(master, appName); SQLContext sqlContext = new SQLContext(context); // Creates a DataFrame based on a table named "people" // stored in a MySQL database. DataFrame df = sqlContext .read() .format("jdbc") .option("url", JDBCURL) .option("dbtable", "tsys_user") .load(); // Looks the schema of this DataFrame. df.printSchema(); // Counts people by age DataFrame countsByAge = df.groupBy("customStyle").count(); countsByAge.show(); // Saves countsByAge to S3 in the JSON format. countsByAge.write().format("json").save("hdfs://192.168.1.17:9000/administrator/sql-result" + sdf.format(new Date())); } }
若是沒有包含mysql的驅動程序,須要參考http://stackoverflow.com/questions/34764505/no-suitable-driver-found-for-jdbc-in-sparkmysql
spark-submit
cli. (意思就是把mysql的驅動程序打包到提交到spark的jar包裏)You can use the following option in your spark-submit
cli :(改爲下面,經測試,可行,或者加入export SPARK_CLASSPATH=$SPARK_CLASSPATH:/usr/local/spark-1.6.1-bin-hadoop2.6/conf/driverLib/mysql-connector-java-5.1.36.jar 到conf/spark-env.sh)sql
spark-submit --driver-class-path /usr/local/spark-1.6.1-bin-hadoop2.6/conf/driverLib/mysql-connector-java-5.1.36.jar --class com.xxx.SparkSql /usr/local/spark.jar
Explanation : Supposing that you have all your jars in a lib
directory in your project root, this will read all the libraries and add them to the application submit.數據庫
You can also try to configure these 2 variables : spark.driver.extraClassPath
and spark.executor.extraClassPath
in SPARK_HOME/conf/spark-default.conf
file and specify the value of these variables as the path of the jar file. Ensure that the same path exists on workernodes.(經測,不行)json