1 |
pathway<-read.table("PTC+_transcript_pep_supp_KEGG.txt",header=T,sep="t",stringsAsFactors=FALSE) |
1 |
v %>% rank() %>% cut(breaks = 10) |
1 |
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { |
1 |
rowwise() |
終於找到ggplot2熱圖空行的解決方案了!!!facet里加參數scale = 「free」
git
1 |
ggplot() + |
origin
github
## m=matrix(data=sample(rnorm(100,mean=0,sd=2)), ncol=10)
## this function makes a graphically appealing heatmap (no dendrogram) using ggplot
## whilst it contains fewer options than gplots::heatmap.2 I prefer its style and flexibility
ggheat=function(m, rescaling='none', clustering='none', labCol=T, labRow=T, border=FALSE,
heatscale= c(low='blue',high='red'))
{
## the function can be be viewed as a two step process
## 1. using the rehape package and other funcs the data is clustered, scaled, and reshaped
## using simple options or by a user supplied function
## 2. with the now resahped data the plot, the chosen labels and plot style are built
require(reshape2)
require(ggplot2)
## you can either scale by row or column not both!
## if you wish to scale by both or use a differen scale method then simply supply a scale
## function instead NB scale is a base funct
if(is.function(rescaling))
{
m=rescaling(m)
}
else
{
if(rescaling=='column')
m=scale(m, center=T)
if(rescaling=='row')
m=t(scale(t(m),center=T))
}
## I have supplied the default cluster and euclidean distance- and chose to cluster after scaling
## if you want a different distance/cluster method-- or to cluster and then scale
## then you can supply a custom function
if(is.function(clustering))
{
m=clustering(m)
}else
{
if(clustering=='row')
m=m[hclust(dist(m))$order, ]
if(clustering=='column')
m=m[,hclust(dist(t(m)))$order]
if(clustering=='both')
m=m[hclust(dist(m))$order ,hclust(dist(t(m)))$order]
}
## this is just reshaping into a ggplot format matrix and making a ggplot layer
rows=dim(m)[1]
cols=dim(m)[2]
melt.m=cbind(rowInd=rep(1:rows, times=cols), colInd=rep(1:cols, each=rows) ,melt(m))
g=ggplot(data=melt.m)
## add the heat tiles with or without a white border for clarity
if(border==TRUE)
g2=g+geom_rect(aes(xmin=colInd-1,xmax=colInd,ymin=rowInd-1,ymax=rowInd, fill=value),colour='white')
if(border==FALSE)
g2=g+geom_rect(aes(xmin=colInd-1,xmax=colInd,ymin=rowInd-1,ymax=rowInd, fill=value))
## add axis labels either supplied or from the colnames rownames of the matrix
if(labCol==T)
g2=g2+scale_x_continuous(breaks=(1:cols)-0.5, labels=colnames(m))
if(labCol==F)
g2=g2+scale_x_continuous(breaks=(1:cols)-0.5, labels=rep('',cols))
if(labRow==T)
g2=g2+scale_y_continuous(breaks=(1:rows)-0.5, labels=rownames(m))
if(labRow==F)
g2=g2+scale_y_continuous(breaks=(1:rows)-0.5, labels=rep('',rows))
## get rid of grey panel background and gridlines
# g2=g2+opts(panel.grid.minor=theme_line(colour=NA), panel.grid.major=theme_line(colour=NA),
# panel.background=theme_rect(fill=NA, colour=NA))
## finally add the fill colour ramp of your choice (default is blue to red)-- and return
return(g2+scale_fill_continuous("", heatscale[1], heatscale[2]))
}
## NB because ggheat returns an ordinary ggplot you can add ggplot tweaks post-production e.g.
## data(mtcars)
## x= as.matrix(mtcars)
## ggheat(x, clustCol=T)+ opts(panel.background=theme_rect(fill='pink'))
1 | < td class="code">
y叔:據說你還不會畫heatmap
express
1 |
x = pheatmap::pheatmap(d) |
1 |
rtracklayer::import() %>% as.data.frame() |
1 |
read.table("xx", colClasses = c("id"="character")) |
1 |
get("object") |