本篇博客主要介紹了Spark SQL中的filter過濾數據、去重、集合等基本操做,以及一些經常使用日期函數,隨機函數,字符串操做等函數的使用,並列編寫了示例代碼,同時還給出了代碼當中用到的一些數據,放在最文章最後。sql
Spark SQL是Spark生態系統中很是重要的組件,其前身爲Shark。Shark是Spark上的數據倉庫,最初設計成與Hive兼容,可是該項目於2014年開始中止開發,轉向Spark SQL。Spark SQL全面繼承了Shark,並進行了優化。 Spark SQL增長了SchemaRDD(即帶有Schema信息的RDD),使用戶能夠在Spark SQL中執行SQL語句,數據既能夠來自RDD,也能夠來自Hive、HDFS、Cassandra等外部數據源,還能夠是JSON格式的數據。Spark SQL目前支持Scala、Java、Python三種語言,支持SQL-92規範。數據庫
Spark SQL能夠很好地支持SQL查詢,一方面,能夠編寫Spark應用程序使用SQL語句進行數據查詢,另外一方面,也可使用標準的數據庫鏈接器(好比JDBC或ODBC)鏈接Spark進行SQL查詢 。apache
去重json
distinct:根據每條數據進行完整去重。app
dropDuplicates:根據字段去重。函數
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /** * 類名 DistinctDemo * 做者 彭三青 * 建立時間 2018-11-29 15:02 * 版本 1.0 * 描述: $ 去重操做:distinct、drop */ object DistinctDemo { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("Operations") .getOrCreate() import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/person.json") val employeeDS: Dataset[Employee] = employeeDF.as[Employee] println("--------------------distinct---------------------") // 根據每條數據進行完整的去重 employeeDS.distinct().show() println("--------------------dropDuplicates---------------------") // 根據字段進行去重 employeeDS.dropDuplicates(Seq("name")).show() } } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
過濾優化
filter():括號裏的參數能夠是過濾函數、函數返回的Boolean值(爲true則保留,false則過濾掉)、列名或者表達式。ui
except:過濾出當前DataSet中有,但在另外一個DataSet中不存在的。spa
intersect:獲取兩個DataSet的交集。scala
提示:except和intersect使用的時候必需要是相同的實例,若是把另一個的Employee換成一個一樣的字段的Person類就會報錯。
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /** * 類名 FilterDemo * 做者 彭三青 * 建立時間 2018-11-29 15:09 * 版本 1.0 * 描述: $ */ object FilterDemo { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("FilterDemo") .getOrCreate() import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json") val employeeDS: Dataset[Employee] = employeeDF.as[Employee] val employee2DF: DataFrame = spark.read.json("E://temp/employee2.json") val employee2DS: Dataset[Employee] = employee2DF.as[Employee] println("--------------------employee--------------------") employeeDS.show() println("--------------------employee2--------------------") employee2DS.show() println( " ┏┓ ┏┓\n" + " ┏┛┻━━━┛┻┓\n" + " ┃ ┃\n" + " ┃ ━ ┃\n" + " ┃ ┳┛ ┗┳ ┃\n" + " ┃ ┃\n" + " ┃ ┻ ┃\n" + " ┃ ┃\n" + " ┗━┓ ┏━┛\n" + " ┃ ┃\n" + " ┃ ┃\n" + " ┃ ┗━━━┓\n" + " ┃ ┣┓\n" + " ┃ ┏┛\n" + " ┗┓┓┏━┳┓┏┛\n" + " ┃┫┫ ┃┫┫\n" + " ┗┻┛ ┗┻┛\n" ) println("-------------------------------------------------") // 若是參數返回true,就保留該元素,不然就過濾掉 employeeDS.filter(employee => employee.age == 35).show() employeeDS.filter(employee => employee.age > 30).show() // 獲取當前的DataSet中有,可是在另一個DataSet中沒有的元素 employeeDS.except(employee2DS).show() // 獲取兩個DataSet的交集 employeeDS.intersect(employee2DS).show() spark.stop() } } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
集合
collect_set:將一個分組內指定字段的值都收集到一塊兒,不去重
collect_list:講一個分組內指定字段的值都收集到一塊兒,會去重
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /** * 類名 CollectSetAndList * 做者 彭三青 * 建立時間 2018-11-29 15:24 * 版本 1.0 * 描述: $ collect_list、 collect_set */ object CollectSetAndList { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("FilterDemo") .getOrCreate() import spark.implicits._ import org.apache.spark.sql.functions._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json") val employeeDS: Dataset[Employee] = employeeDF.as[Employee] // collect_list:將一個分組內指定字段的值都收集到一塊兒,不去重 // collect_set:同上,但惟一區別是會去重 employeeDS .groupBy(employeeDS("depId")) .agg(collect_set(employeeDS("name")), collect_list(employeeDS("name"))) .show() } } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
joinWith和sort
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /** * 類名 JoinAndSort * 做者 彭三青 * 建立時間 2018-11-29 15:19 * 版本 1.0 * 描述: $ */ object JoinAndSort { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("FilterDemo") .getOrCreate() import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json") val employeeDS: Dataset[Employee] = employeeDF.as[Employee] val departmentDF: DataFrame = spark.read.json("E://temp/department.json") val departmentDS: Dataset[Department] = departmentDF.as[Department] println("----------------------employeeDS----------------------") employeeDS.show() println("----------------------departmentDS----------------------") departmentDS.show() println("------------------------------------------------------------") // 等值鏈接 employeeDS.joinWith(departmentDS, $"depId" === $"id").show() // 按照年齡進行排序,並降序排列 employeeDS.sort($"age".desc).show() } } case class Department(id: Long, name: String) case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
日期函數:
current_time():獲取當前日期。
current_timestamp():獲取當前時間戳。
數學函數
rand():生成0~1之間的隨機數
round(e: column,scale: Int ):column列名,scala精確到小數點的位數。
round(e: column):一個參數默認精確到小數點1位。
字符串函數
concat_ws(seq: String, exprs: column*):字符串拼接。參數seq傳入的拼接的字符,column傳入的須要拼接的字符,能夠指定多個列,不一樣列之間用逗號隔開。
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /** * 類名 FunctionsDemo * 做者 彭三青 * 建立時間 2018-11-29 15:56 * 版本 1.0 * 描述: $ */ object FunctionsDemo { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[2]") .appName("Operations") .getOrCreate() import spark.implicits._ import org.apache.spark.sql.functions._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json") val employeeDS: Dataset[Employee] = employeeDF.as[Employee] employeeDS .select(employeeDS("name"), current_date(), current_timestamp(), rand(), round(employeeDS("salary"), 2),// 取隨機數, concat(employeeDS("gender"), employeeDS("age")), concat_ws("|", employeeDS("gender"), employeeDS("age"))).show() spark.stop() } } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
employee.json
{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123} {"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000} {"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000} {"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000} {"name": "Jen", "age": 19, "depId": 2, "gender": "male", "salary": 8000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "XiaoFang", "age": 18, "depId": 3, "gender": "female", "salary": 58000}
employee2.json
{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123} {"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000} {"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000} {"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}
department.json
{"id": 1, "name": "Technical Department"} {"id": 2, "name": "Financial Department"} {"id": 3, "name": "HR Department"}