奇妙的算法之LCS妙解

                                                                      LCS算法妙解html

LCS問題簡述:最長公共子序列算法

一個數列 S,若是分別是兩個或多個已知數列的子序列,且是全部符合此條件序列中最長的,則S 稱爲已知序列的最長公共子序列。數組

LCS問題的分支:最長公共子串與最長公共子序列ide

子串(Substring)是串的一個連續的部分,子序列(Subsequence)則是從不改變序列的順序,而從序列中去掉任意的元素而得到的新序列;更簡略地說,前者(子串)的字符的位置必須連續,後者(子序列LCS)則沒必要。好比字符串acdfg同akdfc的最長公共子串爲df,而他們的最長公共子序列是adf。idea

LCS解題策略:spa

one:窮舉法。。。複雜度再也不多說,想一想2的N次方就感到可怕;code

two:矩陣,也就是動態規劃節LCS問題,也就是今天咱的標題;htm

下面來細講the twith idea:blog

 

 由此圖能夠看出此經典算法的思路;排序

下面是代碼,方便你們理解:

 1 #include<stdio.h>
 2 #include<string.h>
 3 #define MAX(a,b) (a>b?a:b)
 4 const int MAXN=1010;
 5 int dp[MAXN][MAXN];
 6 char a[MAXN],b[MAXN];
 7 int main(){
 8 while(~scanf("%s%s",a+1,b+1)){
 9     memset(dp,0,sizeof(dp));
10     int i,j;
11     for( i=1;a[i];i++){
12         for(j=1;b[j];j++){
13             if(a[i]==b[j])dp[i][j]=dp[i-1][j-1]+1;
14             else dp[i][j]=MAX(dp[i][j-1],dp[i-1][j]);
15         }
16     }
17     printf("%d\n",dp[i-1][j-1]);
18 }
19 return 0;}

此遞歸關係爲:

  1. 若xm=yn,則zk=xm=yn且Zk-1是Xm-1和Yn-1的最長公共子序列;
  2. 若xm≠yn且zk≠xm ,則Z是Xm-1和Y的最長公共子序列;
  3. 若xm≠yn且zk≠yn ,則Z是X和Yn-1的最長公共子序列。

此算法時間複雜度爲n*m,空間複雜度也是n*m;

另外若要記錄路徑就比較複雜了;

lcs解決lis問題:

須要先排序,而後與原數組求最長公共子序列;

下面是道題poj上的,就用到了此題的思想:

Common Subsequence
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 43194   Accepted: 17514

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

還有南陽oj上面有道最長公共子序列更是LCS的模板;

相關文章
相關標籤/搜索