大數據系列之數據倉庫Hive命令使用及JDBC鏈接

Hive系列博文,持續更新~~~

大數據系列之數據倉庫Hive原理

大數據系列之數據倉庫Hive安裝

大數據系列之數據倉庫Hive中分區Partition如何使用

大數據系列之數據倉庫Hive命令使用及JDBC鏈接

本文介紹Hive的使用原理及命令行、Java JDBC對於Hive的使用。html

  在Hadoop項目中,HDFS解決了文件分佈式存儲的問題,MapReduce解決了數據處理分佈式計算問題,以前介紹過Hadoop生態中MapReduce(如下統稱MR)的使用,大數據系列之分佈式計算批處理引擎MapReduce實踐。HBase解決了一種數據的存儲和檢索。那麼要對存在HDFS上的文件或HBase中的表進行查詢時,是要手工寫一堆MapReduce類的。一方面,很麻煩,另外一方面只能由懂MapReduce的程序員類編寫。對於業務人員或數據科學家,很是不方便,這些人習慣了經過sql與rdbms打交道,所以若是有sql方式查詢文件和數據就頗有必要,這就是hive要知足的要求。java

  好比說採用MR處理WordCount統計詞頻時,咱們若是用hql語句進行處理以下:git

  select word,count(*) as totalNum  from t_word group by word order by totalNum desc程序員

關於Hive的典型應用場景:

1.日誌分析

2.統計網站一個時間段的pv,uv;

3.多維度數據分析;

4.海量結構化數據離線分析;

5.低成本進行數據分析(無須編寫MR).

介紹Hive中分區-Partition的意義 

1.Hive的數據類型

 1.1 基本數據類型:

 1.2 hive的集合類型:

2.hive的命令練習:

鏈接hive:github

beeline
!connect jdbc:hive2://master:10000/dbmfz mfz 111111

 

2.1 基本數據類型命令使用  

#用戶表建立
create table if not EXISTS user_dimension(
uid String,
name string,
gender string,
birth date,
province string
) row format delimited
fields terminated by ',';

describe user_dimension;
show create table user_dimension;

#品牌表建立
create table if not EXISTS brand_dimension(
bid string,
category string,
brand string
)row format delimited
fields terminated by ',';

#交易表建立
create table if not EXISTS record_dimension(
rid string,
uid string,
bid string,
price int,
source_province string,
target_province string,
site string,
express_number string,
express_company string,
trancation_date date
)row format delimited
fields terminated by ',';

show tables;

#建立數據
user.DATA
brand.DATA
record.DATA

#載入數據
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/user.data' OVERWRITE INTO TABLE user_dimension;
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/brand.data' OVERWRITE INTO TABLE brand_dimension;
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/record.data' OVERWRITE INTO TABLE record_dimension;
#驗證
select * from user_dimension;
select * from brand_dimension;
select * from record_dimension;
#載入HDFS上數據
load data inpath 'user.data_HDFS_PATH' OVERWRITE INTO TABLE user_dimension;

#查詢
select count(*) from record_dimension where trancation_date = '2017-09-01';
+-----+--+
| c0  |
+-----+--+
| 6   |
+-----+--+
#不一樣年齡消費的狀況
select cast(datediff(CURRENT_DATE ,birth)/365 as int ) as age,sum(price) as totalPrice
  from record_dimension rd
    JOIN user_dimension ud on rd.uid = ud.uid
      group by cast(datediff(CURRENT_DATE ,birth)/365 as int)
        order by totalPrice DESC ;

+------+-------------+--+
| age  | totalprice  |
+------+-------------+--+
| 5    | 944         |
| 25   | 877         |
| 24   | 429         |
| 28   | 120         |
+------+-------------+--+

#不一樣品牌被消費的狀況
select brand,sum(price) as totalPrice
  from record_dimension rd
    join brand_dimension bd on bd.bid = rd.bid
        group by bd.brand
          order by totalPrice desc;
+------------+-------------+--+
|   brand    | totalprice  |
+------------+-------------+--+
| SAMSUNG    | 944         |
| OPPO       | 625         |
| WULIANGYE  | 429         |
| DELL       | 252         |
| NIKE       | 120         |
+------------+-------------+--+

#統計2017-09-01 當天各個品牌的交易筆數,按照倒序排序
select brand,count(*) as sumCount
  from record_dimension rd
    join brand_dimension bd on bd.bid=rd.bid
      where rd.trancation_date='2017-09-01'
      group by bd.brand
        order by sumCount desc
+------------+-----------+--+
|   brand    | sumcount  |
+------------+-----------+--+
| SAMSUNG    | 2         |
| WULIANGYE  | 1         |
| OPPO       | 1         |
| NIKE       | 1         |
| DELL       | 1         |
+------------+-----------+--+

#不一樣性別消費的商品類別狀況
select ud.gender as gender,bd.category shangping,sum(price) totalPrice,count(*) FROM  record_dimension rd
  join user_dimension ud on rd.uid = ud.uid
    join brand_dimension bd on rd.bid = bd.bid
      group by ud.gender,bd.category;

+---------+------------+-------------+-----+--+
| gender  | shangping  | totalprice  | c3  |
+---------+------------+-------------+-----+--+
| F       | telephone  | 944         | 2   |
| M       | computer   | 252         | 1   |
| M       | food       | 429         | 1   |
| M       | sport      | 120         | 1   |
| M       | telephone  | 625         | 1   |
+---------+------------+-------------+-----+--+

2.3. 集合數據類型的命令操做

#data employees.txt

create database practice2;
show databases;
use practice2;

create table if not EXISTS employees(
 name string,
 salary string,
 subordinates array<String>,
 deductions map<String,Float>,
 address struct<street:string,city:string,state:string,zip:int>
)
row format delimited
fields terminated by '\001'
collection items terminated by '\002'
map keys terminated by '\003'
lines terminated by '\n'
stored as textfile;


describe employees;
+---------------+---------------------------------------------------------+----------+--+
|   col_name    |                        data_type                        | comment  |
+---------------+---------------------------------------------------------+----------+--+
| name          | string                                                  |          |
| salary        | string                                                  |          |
| subordinates  | array<string>                                           |          |
| deductions    | map<string,float>                                       |          |
| address       | struct<street:string,city:string,state:string,zip:int>  |          |
+---------------+---------------------------------------------------------+----------+--+

LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/employees.txt' OVERWRITE INTO TABLE employees;
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+
|  employees.name   | employees.salary  |    employees.subordinates    |                    employees.deductions                    |
                              employees.address                               |
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+
| John Doe          | 100000.0          | ["Mary Smith","Todd Jones"]  | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   |
 {"street":"1 Michigan Ave.","city":"Chicago","state":"IL","zip":60600}       |
| Mary Smith        | 80000.0           | ["Bill King"]                | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   |
 {"street":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}       |
| Todd Jones        | 70000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"200 Chicago Ave.","city":"Oak Park","state":"IL","zip":60700}     |
| Bill King         | 60000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"300 Obscure Dr.","city":"Obscuria","state":"IL","zip":60100}      |
| Boss Man          | 200000.0          | ["John Doe","Fred Finance"]  | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  |
 {"street":"1 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Fred Finance      | 150000.0          | ["Stacy Accountant"]         | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  |
 {"street":"2 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Stacy Accountant  | 60000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"300 Main St.","city":"Naperville","state":"IL","zip":60563}       |
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+

select * from employees where deductions['Federal Taxes']>0.2;
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| employees.name  | employees.salary  |    employees.subordinates    |                    employees.deductions                    |
                            employees.address                               |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| John Doe        | 100000.0          | ["Mary Smith","Todd Jones"]  | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   | {
"street":"1 Michigan Ave.","city":"Chicago","state":"IL","zip":60600}       |
| Mary Smith      | 80000.0           | ["Bill King"]                | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   | {
"street":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}       |
| Boss Man        | 200000.0          | ["John Doe","Fred Finance"]  | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  | {
"street":"1 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Fred Finance    | 150000.0          | ["Stacy Accountant"]         | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  | {
"street":"2 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+

#查詢第一位下屬是John Doe的
select * from employees where subordinates[0] = 'John Doe';
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| employees.name  | employees.salary  |    employees.subordinates    |                    employees.deductions                    |
                            employees.address                               |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| Boss Man        | 200000.0          | ["John Doe","Fred Finance"]  | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  | {
"street":"1 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+

#查詢經理 --下屬人數大於0
select * from employees where size(subordinates)>0;
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| employees.name  | employees.salary  |    employees.subordinates    |                    employees.deductions                    |
                            employees.address                               |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+
| John Doe        | 100000.0          | ["Mary Smith","Todd Jones"]  | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   | {
"street":"1 Michigan Ave.","city":"Chicago","state":"IL","zip":60600}       |
| Mary Smith      | 80000.0           | ["Bill King"]                | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   | {
"street":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}       |
| Boss Man        | 200000.0          | ["John Doe","Fred Finance"]  | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  | {
"street":"1 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Fred Finance    | 150000.0          | ["Stacy Accountant"]         | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  | {
"street":"2 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
+-----------------+-------------------+------------------------------+------------------------------------------------------------+--
----------------------------------------------------------------------------+--+

#查詢地址狀態在IL
select * from employees where address.state='IL';
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+
|  employees.name   | employees.salary  |    employees.subordinates    |                    employees.deductions                    |
                              employees.address                               |
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+
| John Doe          | 100000.0          | ["Mary Smith","Todd Jones"]  | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   |
 {"street":"1 Michigan Ave.","city":"Chicago","state":"IL","zip":60600}       |
| Mary Smith        | 80000.0           | ["Bill King"]                | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   |
 {"street":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}       |
| Todd Jones        | 70000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"200 Chicago Ave.","city":"Oak Park","state":"IL","zip":60700}     |
| Bill King         | 60000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"300 Obscure Dr.","city":"Obscuria","state":"IL","zip":60100}      |
| Boss Man          | 200000.0          | ["John Doe","Fred Finance"]  | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  |
 {"street":"1 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Fred Finance      | 150000.0          | ["Stacy Accountant"]         | {"Federal Taxes":0.3,"State Taxes":0.07,"Insurance":0.05}  |
 {"street":"2 Pretentious Drive.","city":"Chicago","state":"IL","zip":60500}  |
| Stacy Accountant  | 60000.0           | []                           | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  |
 {"street":"300 Main St.","city":"Naperville","state":"IL","zip":60563}       |
+-------------------+-------------------+------------------------------+------------------------------------------------------------+
------------------------------------------------------------------------------+--+

#模糊查詢city 頭字符是Na
select * from employees where address.city like 'Na%';
+-------------------+-------------------+-------------------------+------------------------------------------------------------+-----
--------------------------------------------------------------------+--+
|  employees.name   | employees.salary  | employees.subordinates  |                    employees.deductions                    |
                       employees.address                            |
+-------------------+-------------------+-------------------------+------------------------------------------------------------+-----
--------------------------------------------------------------------+--+
| Stacy Accountant  | 60000.0           | []                      | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  | {"st
reet":"300 Main St.","city":"Naperville","state":"IL","zip":60563}  |
+-------------------+-------------------+-------------------------+------------------------------------------------------------+-----
--------------------------------------------------------------------+--+

#正則查詢
 select * from employees where address.street rlike '^.*(Ontario|Chicago).*$';
+-----------------+-------------------+-------------------------+------------------------------------------------------------+-------
--------------------------------------------------------------------+--+
| employees.name  | employees.salary  | employees.subordinates  |                    employees.deductions                    |
                      employees.address                             |
+-----------------+-------------------+-------------------------+------------------------------------------------------------+-------
--------------------------------------------------------------------+--+
| Mary Smith      | 80000.0           | ["Bill King"]           | {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}   | {"stre
et":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}    |
| Todd Jones      | 70000.0           | []                      | {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}  | {"stre
et":"200 Chicago Ave.","city":"Oak Park","state":"IL","zip":60700}  |
+-----------------+-------------------+-------------------------+------------------------------------------------------------+-------
--------------------------------------------------------------------+--+

 

2.4 分區Partition的命令使用

#stocks表建立
CREATE TABLE if not EXISTS stocks(
ymd date,
price_open FLOAT ,
price_high FLOAT ,
price_low FLOAT ,
price_close float,
volume int,
price_adj_close FLOAT
)partitioned by (exchanger string,symbol string)
row format delimited fields terminated by ',';

#加載數據
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/stocks.csv' OVERWRITE INTO TABLE stocks partition(exchanger="NASDAQ",symbol="AAPL");

#查詢partition stocks
show partitions stocks;
+-------------------------------+--+
|           partition           |
+-------------------------------+--+
| exchanger=NASDAQ/symbol=AAPL  |
+-------------------------------+--+

#創建多個分區加載不一樣的數據
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/stocks.csv' OVERWRITE INTO TABLE stocks partition(exchanger="NASDAQ",symbol="INTC");
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/stocks.csv' OVERWRITE INTO TABLE stocks partition(exchanger="NYSE",symbol="GE");
LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/stocks.csv' OVERWRITE INTO TABLE stocks partition(exchanger="NYSE",symbol="IBM");

#分頁查詢stocks分區是exchanger='NASDAQ' and symbol='AAPL'的數據
select * from stocks where exchanger='NASDAQ' and symbol='AAPL' limit 10 ;
+-------------+--------------------+--------------------+-------------------+---------------------+----------------+-----------------
--------+-------------------+----------------+--+
| stocks.ymd  | stocks.price_open  | stocks.price_high  | stocks.price_low  | stocks.price_close  | stocks.volume  | stocks.price_adj
_close  | stocks.exchanger  | stocks.symbol  |
+-------------+--------------------+--------------------+-------------------+---------------------+----------------+-----------------
--------+-------------------+----------------+--+
| 2010-02-08  | 195.69             | 197.88             | 194.0             | 194.12              | 17036300       | 194.12
        | NASDAQ            | AAPL           |
| 2010-02-05  | 192.63             | 196.0              | 190.85            | 195.46              | 30344200       | 195.46
        | NASDAQ            | AAPL           |
| 2010-02-04  | 196.73             | 198.37             | 191.57            | 192.05              | 27022300       | 192.05
        | NASDAQ            | AAPL           |
| 2010-02-03  | 195.17             | 200.2              | 194.42            | 199.23              | 21951800       | 199.23
        | NASDAQ            | AAPL           |
| 2010-02-02  | 195.91             | 196.32             | 193.38            | 195.86              | 24928900       | 195.86
        | NASDAQ            | AAPL           |
| 2010-02-01  | 192.37             | 196.0              | 191.3             | 194.73              | 26717800       | 194.73
        | NASDAQ            | AAPL           |
| 2010-01-29  | 201.08             | 202.2              | 190.25            | 192.06              | 44448700       | 192.06
        | NASDAQ            | AAPL           |
| 2010-01-28  | 204.93             | 205.5              | 198.7             | 199.29              | 41874400       | 199.29
        | NASDAQ            | AAPL           |
| 2010-01-27  | 206.85             | 210.58             | 199.53            | 207.88              | 61478400       | 207.88
        | NASDAQ            | AAPL           |
| 2010-01-26  | 205.95             | 213.71             | 202.58            | 205.94              | 66605200       | 205.94
        | NASDAQ            | AAPL           |
+-------------+--------------------+--------------------+-------------------+---------------------+----------------+-----------------
--------+-------------------+----------------+--+

#統計各分區中總數
select exchanger,symbol,count(*) from stocks group by exchanger,symbol;
+------------+---------+-------+--+
| exchanger  | symbol  |  c2   |
+------------+---------+-------+--+
| NASDAQ     | AAPL    | 6412  |
| NASDAQ     | INTC    | 6412  |
| NYSE       | GE      | 6412  |
| NYSE       | IBM     | 6412  |
+------------+---------+-------+--+

#統計各分區中最大的最大消費金額
select exchanger,symbol,max(price_high) from stocks group by exchanger,symbol;
+------------+---------+---------+--+
| exchanger  | symbol  |   c2    |
+------------+---------+---------+--+
| NASDAQ     | AAPL    | 215.59  |
| NASDAQ     | INTC    | 215.59  |
| NYSE       | GE      | 215.59  |
| NYSE       | IBM     | 215.59  |
+------------+---------+---------+--+

 

2.5 Hive ORCFile 的操做:

更高的壓縮比,更好的性能–使用ORC文件格式優化Hive

create table if not EXISTS record_orc(
  rid string,
  uid string,
  bid string,
  price int,
  source_province string,
  target_province string,
  site string,
  express_number string,
  express_company string,
  trancation_date date
)stored as orc;

show create table record_orc;
+---------------------------------------------------------------------+--+
|                           createtab_stmt                            |
+---------------------------------------------------------------------+--+
| CREATE TABLE `record_orc`(                                          |
|   `rid` string,                                                     |
|   `uid` string,                                                     |
|   `bid` string,                                                     |
|   `price` int,                                                      |
|   `source_province` string,                                         |
|   `target_province` string,                                         |
|   `site` string,                                                    |
|   `express_number` string,                                          |
|   `express_company` string,                                         |
|   `trancation_date` date)                                           |
| ROW FORMAT SERDE                                                    |
|   'org.apache.hadoop.hive.ql.io.orc.OrcSerde'                       |
| STORED AS INPUTFORMAT                                               |
|   'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'                 |
| OUTPUTFORMAT                                                        |
|   'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'                |
| LOCATION                                                            |
|   'hdfs://master:9000/user/hive/warehouse/practice2.db/record_orc'  |
| TBLPROPERTIES (                                                     |
|   'COLUMN_STATS_ACCURATE'='{\"BASIC_STATS\":\"true\"}',             |
|   'numFiles'='0',                                                   |
|   'numRows'='0',                                                    |
|   'rawDataSize'='0',                                                |
|   'totalSize'='0',                                                  |
|   'transient_lastDdlTime'='1491706697')                             |
+---------------------------------------------------------------------+--+

#載入數據
insert into table record_orc select * from record_dimension;

select * from record_orc;
+-----------------+-----------------+-----------------+-------------------+-----------------------------+----------------------------
-+------------------+----------------------------+-----------------------------+-----------------------------+--+
| record_orc.rid  | record_orc.uid  | record_orc.bid  | record_orc.price  | record_orc.source_province  | record_orc.target_province
 | record_orc.site  | record_orc.express_number  | record_orc.express_company  | record_orc.trancation_date  |
+-----------------+-----------------+-----------------+-------------------+-----------------------------+----------------------------
-+------------------+----------------------------+-----------------------------+-----------------------------+--+
| 0000000000      | 00000001        | 00000002        | 625               | HeiLongJiang                | HuNan
 | TianMao          | 22432432532123421431       | ShenTong                    | 2017-09-01                  |
| 0000000001      | 00000001        | 00000001        | 252               | GuangDong                   | HuNan
 | JingDong         | 73847329843                | ZhongTong                   | 2017-09-01                  |
| 0000000002      | 00000004        | 00000003        | 697               | JiangSu                     | Huan
 | TianMaoChaoShi   | 2197298357438              | Shunfeng                    | 2017-09-01                  |
| 0000000003      | 00000004        | 00000003        | 247               | TianJing                    | NeiMeiGu
 | JingDong         | 73298759327894             | YunDa                       | 2017-09-01                  |
| 0000000004      | 00000002        | 00000004        | 429               | ShangHai                    | Ning
 | TianMao          | 438294820                  | YunDa                       | 2017-09-01                  |
| 0000000005      | 00000008        | 00000005        | 120               | HuBei                       | Aomen
 | JuHU             | 5349523959                 | ZhongTong                   | 2017-09-01                  |
+-----------------+-----------------+-----------------+-------------------+-----------------------------+----------------------------
-+------------------+----------------------------+-----------------------------+-----------------------------+--+

select * from record_dimension;
+-----------------------+-----------------------+-----------------------+-------------------------+----------------------------------
-+-----------------------------------+------------------------+----------------------------------+-----------------------------------
+-----------------------------------+--+
| record_dimension.rid  | record_dimension.uid  | record_dimension.bid  | record_dimension.price  | record_dimension.source_province
 | record_dimension.target_province  | record_dimension.site  | record_dimension.express_number  | record_dimension.express_company
| record_dimension.trancation_date  |
+-----------------------+-----------------------+-----------------------+-------------------------+----------------------------------
-+-----------------------------------+------------------------+----------------------------------+-----------------------------------
+-----------------------------------+--+
| 0000000000            | 00000001              | 00000002              | 625                     | HeiLongJiang
 | HuNan                             | TianMao                | 22432432532123421431             | ShenTong
| 2017-09-01                        |
| 0000000001            | 00000001              | 00000001              | 252                     | GuangDong
 | HuNan                             | JingDong               | 73847329843                      | ZhongTong
| 2017-09-01                        |
| 0000000002            | 00000004              | 00000003              | 697                     | JiangSu
 | Huan                              | TianMaoChaoShi         | 2197298357438                    | Shunfeng
| 2017-09-01                        |
| 0000000003            | 00000004              | 00000003              | 247                     | TianJing
 | NeiMeiGu                          | JingDong               | 73298759327894                   | YunDa
| 2017-09-01                        |
| 0000000004            | 00000002              | 00000004              | 429                     | ShangHai
 | Ning                              | TianMao                | 438294820                        | YunDa
| 2017-09-01                        |
| 0000000005            | 00000008              | 00000005              | 120                     | HuBei
 | Aomen                             | JuHU                   | 5349523959                       | ZhongTong
| 2017-09-01                        |
+-----------------------+-----------------------+-----------------------+-------------------------+----------------------------------
-+-----------------------------------+------------------------+----------------------------------+-----------------------------------
+-----------------------------------+--+

 


從數據結果來看沒有多大區別。那咱們來看下hdfs上的存儲文件:sql

 

3.介紹下基本的JDBC鏈接hiveServer2的示例

package com.m.hive;

import java.sql.*;

/**
 * @author mengfanzhu
 * @Package com.m.hive
 * @Description:
 * @date 17/4/3 11:57
 */
public class HiveJdbc {
    private static String driverName = "org.apache.hive.jdbc.HiveDriver";//jdbc驅動路徑
    private static String url = "jdbc:hive2://10.211.55.5:10000/dbmfz";//hive庫地址+庫名
    private static String user = "mfz";//用戶名
    private static String password = "111111";//密碼

    public static void main(String[] args) {
        Connection conn = null;
        Statement stmt = null;
        ResultSet res = null;
        try {
            conn = getConn();
            System.out.println(conn);
            stmt = conn.createStatement();
            stmt.execute("drop table hivetest");
            stmt.execute("CREATE TABLE if not EXISTS hivetest(" +
                    "ymd date," +
                    "price_open FLOAT ," +
                    "price_high FLOAT ," +
                    "price_low FLOAT ," +
                    "price_close float," +
                    "volume int," +
                    "price_adj_close FLOAT" +
                    ")partitioned by (exchanger string,symbol string)" +
                    "row format delimited fields terminated by ','");
            stmt.execute("LOAD DATA LOCAL INPATH '/home/mfz/apache-hive-2.1.1-bin/hivedata/stocks.csv' " +
                    "OVERWRITE INTO TABLE hivetest partition(exchanger=\"NASDAQ\",symbol=\"INTC\")");
            res = stmt.executeQuery("select * from hivetest limit 10");
            System.out.println("執行 select * query 運行結果:");
            while (res.next()) {
                System.out.println(
                        "日期:"+res.getString(1)+
                        "|price_open:"+res.getString(2)+
                        "|price_hign:"+res.getString(3)+
                        "|price_low:"+res.getString(4)+
                        "|price_close:"+res.getString(5)+
                        "|volume:"+res.getString(6)+
                        "|price_adj_close:"+res.getString(7)+
                        "|exchanger:"+res.getString(8)+
                        "|symbol:"+res.getString(9));
            }

        } catch (ClassNotFoundException e) {
            e.printStackTrace();
            System.exit(1);
        } catch (SQLException e) {
            e.printStackTrace();
            System.exit(1);
        }finally {
            try{
                if(null!=res){
                    res.close();
                }
                if(null!=stmt){
                    stmt.close();
                }
                if(null!=conn){
                    conn.close();
                }
            }catch (Exception e){
                e.printStackTrace();
            }

        }
    }

    private static Connection getConn() throws ClassNotFoundException,
            SQLException {
        Class.forName(driverName);
        Connection conn = DriverManager.getConnection(url, user, password);
        return conn;
    }
}

 

運行結果express

 

操做完成後咱們在hdfs中能夠見到咱們以前操做過的文件。這個目錄是咱們以前在hive-site.xml中配置了此項apache

<property>
        <name>hive.metastore.warehouse.dir</name>
        <value>/user/hive/warehouse</value>
        <description>locationofdefault databasefor thewarehouse</description>
</property>

 

完~,項目示例見Github https://github.com/fzmeng/HiveExample
分佈式

相關文章
相關標籤/搜索