JavaShuo
欄目
標籤
001: MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching
時間 2020-12-23
原文
原文鏈接
Abstract 本文提出的MatchNet包含了(1)從patches中提取特徵的DCNN(深度卷積神經網絡)(2)一個有着三個全連接層的網絡。爲了保證實驗可以復現,本文在標準的數據集上對MatchNet進行訓練。我們將MatchNet拆成feature compution和similarity networks 兩個連續的階段。MatchNet在提升準確性的同時減小了存儲開銷。 1. Intr
>>阅读原文<<
相關文章
1.
MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching
2.
《Learning Semantic Concepts and Order for Image and Sentence Matching》
3.
Unifying Task-oriented Knowledge Graph Learning and Recommendation
4.
DIVERSITY REGULARIZED METRIC LEARNING FOR PERSON RE-IDENTIFICATION(ICIP2016)
5.
Similarity Metric Learning for Face Recognition2013
6.
Ranked List Loss for Deep Metric Learning
7.
2D3D-MatchNet: Learning to Match Keypoints Across 2D Image and 3D Point Cloud
8.
Matching Networks for one Shot Learning 閱讀筆記
9.
Survey and experimental study on metric learning methods
10.
Learning Semantic Concepts and Order for Image and Sentence Matching筆記
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
unifying
matching
metric
feature
learning
feature...setfeature
action.....and
between...and
react+and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching
2.
《Learning Semantic Concepts and Order for Image and Sentence Matching》
3.
Unifying Task-oriented Knowledge Graph Learning and Recommendation
4.
DIVERSITY REGULARIZED METRIC LEARNING FOR PERSON RE-IDENTIFICATION(ICIP2016)
5.
Similarity Metric Learning for Face Recognition2013
6.
Ranked List Loss for Deep Metric Learning
7.
2D3D-MatchNet: Learning to Match Keypoints Across 2D Image and 3D Point Cloud
8.
Matching Networks for one Shot Learning 閱讀筆記
9.
Survey and experimental study on metric learning methods
10.
Learning Semantic Concepts and Order for Image and Sentence Matching筆記
>>更多相關文章<<