http://acm.hdu.edu.cn/showproblem.php?pid=4135php
由於要與n互素, 因此n的素因子顯然是不能出現的...那麼咱們只要找出1-a和1-b中含n的素因子的數的個數便可...node
顯然會有大量重複,大膽容斥O(2^cnt)便可..cnt是n的素因子的個數ios
bitset維護全部素因子的二進制值,枚舉一下就出來了...素因子不是很大...整體大概O(sqrt(n) * 2^(cnt)) spa
/********************* Template ************************/ #include <set> #include <map> #include <list> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <bitset> #include <cstdio> #include <string> #include <vector> #include <cassert> #include <cstdlib> #include <cstring> #include <sstream> #include <fstream> #include <numeric> #include <iomanip> #include <iostream> #include <algorithm> #include <functional> using namespace std; #define EPS 1e-8 #define DINF 1e15 #define MAXN 105000 #define LINF 1LL << 60 #define MOD 1000000007 #define INF 0x7fffffff #define PI 3.14159265358979323846 #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define BUG cout<<" BUG! "<<endl; #define LINE cout<<" ------------------ "<<endl; #define FIN freopen("in.txt","r",stdin); #define FOUT freopen("out.txt","w",stdout); #define mem(a,b) memset(a,b,sizeof(a)) #define FOR(i,a,b) for(int i = a ; i < b ; i++) #define read(a) scanf("%d",&a) #define read2(a,b) scanf("%d%d",&a,&b) #define read3(a,b,c) scanf("%d%d%d",&a,&b,&c) #define write(a) printf("%d\n",a) #define write2(a,b) printf("%d %d\n",a,b) #define write3(a,b,c) printf("%d %d %d\n",a,b,c) #pragma comment (linker,"/STACK:102400000,102400000") template<class T> inline T L(T a) {return (a << 1);} template<class T> inline T R(T a) {return (a << 1 | 1);} template<class T> inline T lowbit(T a) {return (a & -a);} template<class T> inline T Mid(T a,T b) {return ((a + b) >> 1);} template<class T> inline T gcd(T a,T b) {return b ? gcd(b,a%b) : a;} template<class T> inline T lcm(T a,T b) {return a / gcd(a,b) * b;} template<class T> inline T Min(T a,T b) {return a < b ? a : b;} template<class T> inline T Max(T a,T b) {return a > b ? a : b;} template<class T> inline T Min(T a,T b,T c) {return min(min(a,b),c);} template<class T> inline T Max(T a,T b,T c) {return max(max(a,b),c);} template<class T> inline T Min(T a,T b,T c,T d) {return min(min(a,b),min(c,d));} template<class T> inline T Max(T a,T b,T c,T d) {return max(max(a,b),max(c,d));} template<class T> inline T exGCD(T a, T b, T &x, T &y){ if(!b) return x = 1,y = 0,a; T res = exGCD(b,a%b,x,y),tmp = x; x = y,y = tmp - (a / b) * y; return res; } //typedef long long LL; typedef unsigned long long ULL; typedef __int64 LL; typedef unsigned __int64 ULL; /********************* By F *********************/ LL a,b,n,ans; struct node{ LL num; int cnt; }prim[MAXN]; int cnt; // O(sqrt(n)) 獲得n的因子 void solve_n(LL n){ cnt = 0; LL m = n; for(LL i = 2 ; i*i <= m; i++){ if(n%i == 0){ prim[cnt].num = i; while(n%i == 0){ prim[cnt].cnt++; n/=i; } cnt++; } } if(n > 1) { prim[cnt].num = n; prim[cnt++].cnt = 1; } //for(int i = 0 ; i < cnt ; i++) cout<<prim[i].num<<" "<<prim[i].cnt<<endl; } // 容斥1-a中與n互素的數的個數 LL getprim(LL a,LL n){ LL ret = 0; for(int i = 1 ; i < (1<<cnt) ; i++){ bitset<32> bit(i); int p = bit.count(),mul = 1; for(int i = 0 ; i < 32 ; i++) if(bit[i]) mul *= prim[i].num; if(p&1) ret += (a/mul); else ret -= (a/mul); } return a - ret; } int main(){ //FIN; //FOUT; int T; scanf("%d",&T); for(int cas = 1 ; cas <= T ;cas++){ mem(prim,0); scanf("%I64d%I64d%I64d",&a,&b,&n); solve_n(n); LL ans = getprim(b,n) - getprim(a,n); if(gcd(a,n)==1) ans++; printf("Case #%d: %I64d\n",cas,ans); } return 0; }