from future import print_function
import cv2 as cv
import argparse
parser = argparse.ArgumentParser(description='This program shows how to use background subtraction methods provided by \
OpenCV. You can process both videos and images.')
parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi')
parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2')
args = parser.parse_args()
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)
while True:
ret, frame = capture.read()
if frame is None:
breakweb
fgMask = backSub.apply(frame) cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0)) cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask) keyboard = cv.waitKey(30) if keyboard == 'q' or keyboard == 27: break
解釋 咱們討論上面代碼的主要部分: * 一個cv::BackgroundSubtractor對象將用於生成前景掩碼。在此示例中,使用了默認參數,可是也能夠在create函數中聲明特定的參數。 #建立背景分離對象
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()app
* 一個cv::VideoCapture對象用於讀取輸入視頻或輸入圖像序列。
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)框架
* 每幀都用於計算前景掩碼和更新背景。若是要更改用於更新背景模型的學習率,能夠經過將參數傳遞給apply方法來設置特定的學習率。 #更新背景模型
fgMask = backSub.apply(frame)
* 當前幀號能夠從cv::VideoCapture對象中提取,並標記在當前幀的左上角。白色矩形用於突出顯示黑色的幀編號。 #獲取幀號並將其寫入當前幀
cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
* 咱們準備顯示當前的輸入框和結果。 #展現當前幀和背景掩碼
cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask)
**結果** 對於vtest.avi視頻,適用如下框架: ![](https://s4.51cto.com/images/blog/202101/06/82080b8db5e40e47e12cbf0cce6db2d9.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=) MOG2方法的程序輸出以下所示(檢測到灰色區域有陰影): ![](https://s4.51cto.com/images/blog/202101/06/f9f490a4dc6c98761c41644d71ef4c4b.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=) 對於KNN方法,程序的輸出將以下所示(檢測到灰色區域的陰影): ![](https://s4.51cto.com/images/blog/202101/06/363742e71118329aa64f8a36379711dc.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=) **參考** Background Models Challenge (BMC) website A Benchmark Dataset for Foreground/Background Extraction