【R】數據結構

以前一陣子,在EDX上學習了R語言的一門基礎課程,這裏作個總結。這門課程主要側重於R的數據結構的介紹,固然也介紹了它的基本的繪圖手段。數據結構

工做空間相關

ls()

## character(0)

rm(a)

## Warning in rm(a): 找不到對象'a'

ls()

## character(0)

基本數據類型

  1. logical
    • TRUE/FALSE/NA/T/F(推薦使用完整形式)/某些時候的0與非0
  2. numeric
    • integer is numeric
    • numeric not always integer
  3. character

Other atomic types:app

  • double: higher precision
  • complex: complex numbers
  • raw: store raw bytes

is.*()返回括號內內容是不是*對應類型。函數

# logical
TRUE

## [1] TRUE

class(TRUE)

## [1] "logical"

FALSE

## [1] FALSE

class(NA)

## [1] "logical"

T

## [1] TRUE

F

## [1] FALSE

# numeric
2

## [1] 2

class(2)

## [1] "numeric"

2.5

## [1] 2.5

class(2.5)

## [1] "numeric"

2L

## [1] 2

class(2L) 

## [1] "integer"

is.numeric(2)

## [1] TRUE

is.numeric(2L)

## [1] TRUE

#integer is numeric 
#numeric not always integer
is.integer(2)

## [1] FALSE

is.integer(2L)

## [1] TRUE

# character
 "I love data science!"

## [1] "I love data science!"

 class("I love data science!")

## [1] "character"

強制轉換

as.*()返回括號內內容轉化爲*對應類型後的結果,有些狀況沒法轉換。學習

as.numeric(TRUE)

## [1] 1

as.numeric(FALSE)

## [1] 0

as.character(4)

## [1] "4"

as.numeric("4.5")

## [1] 4.5

as.integer("4.5")

## [1] 4

as.numeric("Hello")

## Warning: 強制改變過程當中產生了NA

## [1] NA

向量 Vector

  • Sequence of data elements
  • Same basic type
    • Automatic coercion if necessary
  • character, numeric, logical
  • Single value = Vector

建立 c()或者利用:

# c()
drawn_suits <- c("hearts", "spades", "diamonds",  
                   "diamonds", "spades")
drawn_suits

## [1] "hearts"   "spades"   "diamonds" "diamonds" "spades"

is.vector(drawn_suits)

## [1] TRUE

# :
1:5

## [1] 1 2 3 4 5

is.vector(1:5)

## [1] TRUE

命名 names()

remain <- c(11, 12, 11, 13)
suits <- c("spades", "hearts", "diamonds", "clubs")
names(remain) <- suits
remain 

##   spades   hearts diamonds    clubs 
##       11       12       11       13

#or
remain <- c(spades = 11, hearts = 12,  
              diamonds = 11, clubs = 13)
remain

##   spades   hearts diamonds    clubs 
##       11       12       11       13

#or
remain <- c("spades" = 11, "hearts" = 12,  
              "diamonds" = 11, "clubs" = 13)
remain

##   spades   hearts diamonds    clubs 
##       11       12       11       13

單值仍爲向量

my_apples <- 5 
my_oranges <- "six" 
is.vector(my_apples)

## [1] TRUE

is.vector(my_oranges)

## [1] TRUE

length(my_apples)

## [1] 1

length(my_oranges)

## [1] 1

強制變換

drawn_ranks <- c(7, 4, "A", 10, "K", 3, 2, "Q")
drawn_ranks

## [1] "7"  "4"  "A"  "10" "K"  "3"  "2"  "Q"

class(drawn_ranks)

## [1] "character"

基本運算

很天然的能夠由單數的運算推廣出來。ui

# with number: +-*/
earnings <- c(50, 100, 30)
earnings * 3

## [1] 150 300  90

earnings^2

## [1]  2500 10000   900

# with vector: +-*/
earnings <- c(50, 100, 30) 
expenses <- c(30, 40, 80) 
bank <- earnings - expenses
## sum() >
sum(bank)

## [1] 30

earnings > expenses

## [1]  TRUE  TRUE FALSE

## multiplication and division are done element-wise!
earnings * c(1, 2, 3)

## [1]  50 200  90

子集

三種索引方式atom

  • 序號(R從1開始)
  • 名字 —— names()的利用
  • 邏輯值
remain <- c(spades = 11, hearts = 12,  
              diamonds = 11, clubs = 13)
remain[1]

## spades 
##     11

remain["spades"]

## spades 
##     11

remain[c(4, 1)] # 此法能夠用來交換或者抽取特定位置的元素

##  clubs spades 
##     13     11

remain[c("clubs", "spades")]

##  clubs spades 
##     13     11

# 邏輯值索引,短的會被自動循環使用
remain[c(TRUE, FALSE)]

##   spades diamonds 
##       11       11

remain[c(TRUE, FALSE, TRUE, FALSE)]

##   spades diamonds 
##       11       11

# 負索引,「all but it」,返回除此以外的元素
remain[-1]

##   hearts diamonds    clubs 
##       12       11       13

remain[-c(1, 2)]

## diamonds    clubs 
##       11       13

#remain[-"spades"] #can't work

矩陣 Matrix

  • Vector: 1D array of data elements
  • Matrix: 2D array of data elements
  • Rows and columns
  • One atomic vector type

建立 matrix()

默認按列填充spa

# 直接建立
matrix(1:6, nrow = 2)

##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6

matrix(1:6, ncol = 3)

##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6

matrix(1:6, nrow = 2, byrow = TRUE)

##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6

# 循環建立
matrix(1:3, nrow = 2, ncol = 3)

##      [,1] [,2] [,3]
## [1,]    1    3    2
## [2,]    2    1    3

matrix(1:4, nrow = 2, ncol = 3)

## Warning in matrix(1:4, nrow = 2, ncol = 3): 數據長度[4]不是矩陣列數[3]的整
## 倍數

##      [,1] [,2] [,3]
## [1,]    1    3    1
## [2,]    2    4    2

# 組合建立
cbind(1:3, 1:3)

##      [,1] [,2]
## [1,]    1    1
## [2,]    2    2
## [3,]    3    3

rbind(1:3, 1:3)

##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    1    2    3

m <- matrix(1:6, byrow = TRUE, nrow = 2)
rbind(m, 7:9)

##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6
## [3,]    7    8    9

cbind(m, c(10, 11))

##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3   10
## [2,]    4    5    6   11

命名

rownames(), colnames()code

m <- matrix(1:6, byrow = TRUE, nrow = 2)
rownames(m) <- c("row1", "row2")
m

##      [,1] [,2] [,3]
## row1    1    2    3
## row2    4    5    6

colnames(m) <- c("col1", "col2", "col3")
m

##      col1 col2 col3
## row1    1    2    3
## row2    4    5    6

# 直接命名
m <- matrix(1:6, byrow = TRUE, nrow = 2,  
              dimnames = list(c("row1", "row2"),  
                              c("col1", "col2", "col3"))) 
m

##      col1 col2 col3
## row1    1    2    3
## row2    4    5    6

強制轉換

num <- matrix(1:8, ncol = 2)
num

##      [,1] [,2]
## [1,]    1    5
## [2,]    2    6
## [3,]    3    7
## [4,]    4    8

char <- matrix(LETTERS[1:6], nrow = 4, ncol = 3)
char

##      [,1] [,2] [,3]
## [1,] "A"  "E"  "C" 
## [2,] "B"  "F"  "D" 
## [3,] "C"  "A"  "E" 
## [4,] "D"  "B"  "F"

num <- matrix(1:8, ncol = 2)
char <- matrix(LETTERS[1:6], nrow = 4, ncol = 3)
cbind(num, char)

##      [,1] [,2] [,3] [,4] [,5]
## [1,] "1"  "5"  "A"  "E"  "C" 
## [2,] "2"  "6"  "B"  "F"  "D" 
## [3,] "3"  "7"  "C"  "A"  "E" 
## [4,] "4"  "8"  "D"  "B"  "F"

子集運算

m <- matrix(sample(1:15, 12), nrow = 3)
rownames(m) <- c("r1", "r2", "r3") 
colnames(m) <- c("a", "b", "c", "d")
m

##     a  b  c  d
## r1  7  5  6 10
## r2  3  9 12  8
## r3 15 13  2  4

m[1,3]

## [1] 6

m[3,] 

##  a  b  c  d 
## 15 13  2  4

m[,3]

## r1 r2 r3 
##  6 12  2

m[4] # 默認按列計數 

## [1] 5

m[2, c(2, 3)]

##  b  c 
##  9 12

m[c(1, 2), c(2, 3)]

##    b  c
## r1 5  6
## r2 9 12

m[c(1, 3), c(1, 3, 4)]

##     a c  d
## r1  7 6 10
## r3 15 2  4

m["r2","c"]

## [1] 12

m[2,"c"]

## [1] 12

m[3, c("c", "d")]

## c d 
## 2 4

m[c(FALSE, FALSE, TRUE),  
    c(FALSE, TRUE, FALSE, TRUE)] 

##  b  d 
## 13  4

m[c(FALSE, FALSE, TRUE),  
    c(FALSE, TRUE)]

##  b  d 
## 13  4

矩陣運算

  • colSums(), rowSums()
  • Standard arithmetic possible
  • Element-wise computation
the_fellowship <- c(316, 556) 
two_towers <- c(343, 584) 
return_king <- c(378, 742) 
lotr_matrix <- rbind(the_fellowship, two_towers, return_king) 
colnames(lotr_matrix) <- c("US", "non-US") 
rownames(lotr_matrix) <- c("Fellowship", "Two Towers",  
                             "Return King") 
lotr_matrix

##              US non-US
## Fellowship  316    556
## Two Towers  343    584
## Return King 378    742

# 與數字 +-*/
lotr_matrix / 1.12 

##                   US   non-US
## Fellowship  282.1429 496.4286
## Two Towers  306.2500 521.4286
## Return King 337.5000 662.5000

lotr_matrix - 50

##              US non-US
## Fellowship  266    506
## Two Towers  293    534
## Return King 328    692

# 與矩陣 +-*/ (這裏不是線性代數中的矩陣計算)
theater_cut <- matrix(c(50, 80, 100), nrow = 3, ncol = 2)
theater_cut

##      [,1] [,2]
## [1,]   50   50
## [2,]   80   80
## [3,]  100  100

lotr_matrix - theater_cut

##              US non-US
## Fellowship  266    506
## Two Towers  263    504
## Return King 278    642

# 與向量
lotr_matrix - c(50, 80, 100) #按列循環計算

##              US non-US
## Fellowship  266    506
## Two Towers  263    504
## Return King 278    642

因子 Factors

  • Factors for categorical variables
  • Limited number of different values
  • Belong to category

建立因子 factor()

blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
blood

## [1] "B"  "AB" "O"  "A"  "O"  "O"  "A"  "B"

blood_factor <- factor(blood) # 默認等級按照字母順序定
blood_factor

## [1] B  AB O  A  O  O  A  B 
## Levels: A AB B O

str(blood_factor)

##  Factor w/ 4 levels "A","AB","B","O": 3 2 4 1 4 4 1 3

# 自定義level
blood_factor2 <- factor(blood, 
                          levels = c("O", "A", "B", "AB"))
blood_factor2

## [1] B  AB O  A  O  O  A  B 
## Levels: O A B AB

str(blood_factor2)

##  Factor w/ 4 levels "O","A","B","AB": 3 4 1 2 1 1 2 3

Rename factor levels

blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
#1.1
blood_factor <- factor(blood)
levels(blood_factor) <- c("BT_A", "BT_AB", "BT_B", "BT_O")
#1.2
blood <- c("B", "AB", "O", "A", "O", "O", "A", "B") 
blood_factor <- factor(blood) 
factor(blood,  
         levels = c("O", "A", "B", "AB"),  
         labels = c("BT_O", "BT_A", "BT_B", "BT_AB"))

## [1] BT_B  BT_AB BT_O  BT_A  BT_O  BT_O  BT_A  BT_B 
## Levels: BT_O BT_A BT_B BT_AB

#2
factor(blood, labels = c("BT_A", "BT_AB", "BT_B", "BT_O"))

## [1] BT_B  BT_AB BT_O  BT_A  BT_O  BT_O  BT_A  BT_B 
## Levels: BT_A BT_AB BT_B BT_O

Ordered factor

blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
blood_factor <- factor(blood) 
blood_factor[1] < blood_factor[2] 

## Warning in Ops.factor(blood_factor[1], blood_factor[2]): '<' not meaningful
## for factors

## [1] NA

# 下面比較大小纔是有意義的
tshirt <- c("M", "L", "S", "S", "L", "M", "L", "M")
tshirt_factor <- factor(tshirt, ordered = TRUE, 
                          levels = c("S", "M", "L"))
tshirt_factor

## [1] M L S S L M L M
## Levels: S < M < L

tshirt_factor[1] < tshirt_factor[2]

## [1] TRUE

列表 List

Vector - Matrix - List對象

  • Vector: 1D, same type
  • Matrix: 2D, same type
  • List:
    • Different R objects
    • No coercion
    • Loss of some functionality

建立列表 list()

list("Rsome times", 190, 5)

## [[1]]
## [1] "Rsome times"
## 
## [[2]]
## [1] 190
## 
## [[3]]
## [1] 5

song <- list("Rsome times", 190, 5)
is.list(song)

## [1] TRUE

命名列表

#1
song <- list("Rsome times", 190, 5) 
names(song) <- c("title", "duration", "track")
song

## $title
## [1] "Rsome times"
## 
## $duration
## [1] 190
## 
## $track
## [1] 5

#2
song <- list(title = "Rsome times",  
               duration = 190,  
               track = 5)
song

## $title
## [1] "Rsome times"
## 
## $duration
## [1] 190
## 
## $track
## [1] 5

str(song)

## List of 3
##  $ title   : chr "Rsome times"
##  $ duration: num 190
##  $ track   : num 5

列表嵌套

similar_song <- list(title = "R you on time?", 
                       duration = 230)
song <- list(title = "Rsome times", 
               duration = 190, track = 5,  
               similar = similar_song)
str(song)

## List of 4
##  $ title   : chr "Rsome times"
##  $ duration: num 190
##  $ track   : num 5
##  $ similar :List of 2
##   ..$ title   : chr "R you on time?"
##   ..$ duration: num 230

子集運算

[ versus [[排序

similar_song <- list(title = "R you on time?", 
                       duration = 230) 
song <- list(title = "Rsome times", 
               duration = 190, track = 5, 
               similar = similar_song) 
str(song)

## List of 4
##  $ title   : chr "Rsome times"
##  $ duration: num 190
##  $ track   : num 5
##  $ similar :List of 2
##   ..$ title   : chr "R you on time?"
##   ..$ duration: num 230

song[1]

## $title
## [1] "Rsome times"

song[[1]]

## [1] "Rsome times"

song[c(1, 3)] 

## $title
## [1] "Rsome times"
## 
## $track
## [1] 5

#song[[c(1, 3)]] #can't work
#song[[1]][[3]] #can't work
song[["duration"]]

## [1] 190

song["duration"]

## $duration
## [1] 190

song[c(FALSE, TRUE, TRUE, FALSE)]

## $duration
## [1] 190
## 
## $track
## [1] 5

#song[[c(FALSE, TRUE, TRUE, FALSE)]] # can't work
#song[[F]][[T]][[T]][[F]] #also

# list in list
song[[4]][[1]]

## [1] "R you on time?"

song[[c(4, 1)]]

## [1] "R you on time?"

song[c("duration", "similar")] 

## $duration
## [1] 190
## 
## $similar
## $similar$title
## [1] "R you on time?"
## 
## $similar$duration
## [1] 230

[[ or [ ? + [[ to select list element + [ results in
sublist + [[ and $ to subset and extend lists

列表擴展

這裏引出了R中比較重要的一個符號$

similar_song <- list(title = "R you on time?", 
                       duration = 230) 
song <- list(title = "Rsome times", 
               duration = 190, track = 5, 
               similar = similar_song) 
#$
song$duration

## [1] 190

#extending
friends <- c("Kurt", "Florence",
                "Patti", "Dave")
song$sent <- friends #或者 song[["sent"]] <- friends
song$similar$reason <- "too long"
song

## $title
## [1] "Rsome times"
## 
## $duration
## [1] 190
## 
## $track
## [1] 5
## 
## $similar
## $similar$title
## [1] "R you on time?"
## 
## $similar$duration
## [1] 230
## 
## $similar$reason
## [1] "too long"
## 
## 
## $sent
## [1] "Kurt"     "Florence" "Patti"    "Dave"

數據框 Data Frame

  • Observations 觀測值
  • Variables 變量
  • Example: people
    • each person = observation
    • properties (name, age …) = variables
  • Rows = observations (persons)
  • Columns = variables (age, name, …)

不一樣的變量的觀測值能夠類型不一樣,可是變量本身的全部觀測值類型一致。

多在導入數據時使用。

建立數據框

name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
age <- c(28, 30, 21, 39, 35) 
child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
df <- data.frame(name, age, child) 
str(df)

## 'data.frame':    5 obs. of  3 variables:
##  $ name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
##  $ age  : num  28 30 21 39 35
##  $ child: logi  FALSE TRUE TRUE FALSE TRUE

命名數據框

name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
age <- c(28, 30, 21, 39, 35) 
child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
df <- data.frame(name, age, child)
names(df) <- c("Name", "Age", "Child") 
str(df)

## 'data.frame':    5 obs. of  3 variables:
##  $ Name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
##  $ Age  : num  28 30 21 39 35
##  $ Child: logi  FALSE TRUE TRUE FALSE TRUE

df <- data.frame(Name = name, Age = age, Child = child) #also
str(df)

## 'data.frame':    5 obs. of  3 variables:
##  $ Name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
##  $ Age  : num  28 30 21 39 35
##  $ Child: logi  FALSE TRUE TRUE FALSE TRUE

可見,這裏的字符串向量,被自動轉化爲因子類型,因此能夠設置參數來避免此隱含行爲。

name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
age <- c(28, 30, 21, 39, 35) 
child <- c(FALSE, TRUE, TRUE, FALSE, TRUE)
df <- data.frame(name, age, child, 
                   stringsAsFactors = FALSE)
str(df)

## 'data.frame':    5 obs. of  3 variables:
##  $ name : chr  "Anne" "Pete" "Frank" "Julia" ...
##  $ age  : num  28 30 21 39 35
##  $ child: logi  FALSE TRUE TRUE FALSE TRUE

子集運算

Subset Data Frame * Subsetting syntax from matrices and lists * [
from matrices * [[ and $ from lists

name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
age <- c(28, 30, 21, 39, 35) 
child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
people <- data.frame(name, age, child,  
               stringsAsFactors = FALSE)

# 相似矩陣的操做
people[3,2] 

## [1] 21

people[3,"age"]

## [1] 21

people[,"age"]

## [1] 28 30 21 39 35

people[3,] # 因爲返回的是一個數據框,個人R notebook不顯示數據框

##    name age child
## 3 Frank  21  TRUE

people[c(3, 5), c("age", "child")] # 同上

##   age child
## 3  21  TRUE
## 5  35  TRUE

# 相似列表的操做
people$age

## [1] 28 30 21 39 35

people[["age"]]

## [1] 28 30 21 39 35

people[[2]]

## [1] 28 30 21 39 35

## 因爲返回的是一個數據框,個人R notebook不顯示數據框
people["age"]

##   age
## 1  28
## 2  30
## 3  21
## 4  39
## 5  35

people[2]

##   age
## 1  28
## 2  30
## 3  21
## 4  39
## 5  35

擴展數據框

Extend Data Frame * Add columns = add variables * Add rows = add
observations

name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
age <- c(28, 30, 21, 39, 35) 
child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
people <- data.frame(name, age, child,  
               stringsAsFactors = FALSE)
#Add column
height <- c(163, 177, 163, 162, 157) 
people$height <- height 
str(people)

## 'data.frame':    5 obs. of  4 variables:
##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
##  $ age   : num  28 30 21 39 35
##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
##  $ height: num  163 177 163 162 157

##also
people[["height"]] <- height
str(people)

## 'data.frame':    5 obs. of  4 variables:
##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
##  $ age   : num  28 30 21 39 35
##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
##  $ height: num  163 177 163 162 157

weight <- c(74, 63, 68, 55, 56) 
cbind(people, weight)

##    name age child height weight
## 1  Anne  28 FALSE    163     74
## 2  Pete  30  TRUE    177     63
## 3 Frank  21  TRUE    163     68
## 4 Julia  39 FALSE    162     55
## 5  Cath  35  TRUE    157     56

#Add row 這裏要注意,有時候會出錯
tom <- data.frame("Tom", 37, FALSE, 183)
#rbind(people, tom)
#會報錯:
#Error : names do not match previous names
tom <- data.frame(name = "Tom", age = 37, 
            child = FALSE, height = 183)
rbind(people, tom) 

##    name age child height
## 1  Anne  28 FALSE    163
## 2  Pete  30  TRUE    177
## 3 Frank  21  TRUE    163
## 4 Julia  39 FALSE    162
## 5  Cath  35  TRUE    157
## 6   Tom  37 FALSE    183

排序

這裏主要介紹了sort()order(),其中,order()更適合用來爲數據框調整順序。

str(people)

## 'data.frame':    5 obs. of  4 variables:
##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
##  $ age   : num  28 30 21 39 35
##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
##  $ height: num  163 177 163 162 157

#sort()直接對於向量元素進行了排序
sort(people$age)

## [1] 21 28 30 35 39

#order()會返回對應大小等級所實際在的位置
ranks <- order(people$age) 
ranks

## [1] 3 1 2 5 4

people$age

## [1] 28 30 21 39 35

people[ranks, ] #直接對行進行了排序

##    name age child height
## 3 Frank  21  TRUE    163
## 1  Anne  28 FALSE    163
## 2  Pete  30  TRUE    177
## 5  Cath  35  TRUE    157
## 4 Julia  39 FALSE    162

#或者以下能夠實現降序排序
people[order(people$age, decreasing = TRUE), ] 

##    name age child height
## 4 Julia  39 FALSE    162
## 5  Cath  35  TRUE    157
## 2  Pete  30  TRUE    177
## 1  Anne  28 FALSE    163
## 3 Frank  21  TRUE    163

繪圖 Graphics

這裏主要介紹了graphics包的plot()hist()

plot()會根據不一樣的數據類型,而畫出不一樣的圖像

  1. plot() (categorical) 條形圖 例如:plot(countries$continent)
  2. plot() (numerical) 散點圖 例如:plot(countries$population)
  3. plot() (2x numerical) 散點圖
    例如:plot(countries$area, countries$population)
    plot(log(countries$area), log(countries$population))
  4. plot() (2x categorical) 某種條形圖的變形
    例如:plot(countries$continent, countries$religion)

hist()能夠繪製直方圖 例如: hist(africa$population)
hist(africa$population, breaks = 10)

Other graphics functions * barplot() * boxplot() * pairs()

自定義繪圖

這裏就是修改參數了。無需多講。

這裏,引出了函數par(),這是一個繪圖的公共參數列表,裏面存放着經常使用的一些繪圖的公共屬性,能夠實現繪製多幅圖形時,基本屬性的一次性肯定。

例如:

par(col = "blue") 
plot(mercury$temperature, mercury$pressure)

經常使用的plot的屬性有:

plot(mercury$temperature, mercury$pressure, 
       xlab = "Temperature", 
       ylab = "Pressure", 
       main = "T vs P for Mercury", #標題
       type = "o", 
       col = "orange", 
       col.main = "darkgray", 
       cex.axis = 0.6, #cex系列屬性表示縮放程度
       lty = 5, #Line Type
       pch = 4  #Plot Symbol
       )

多圖繪製

mfrowmfcol參數能夠在一個圖形框裏,用來放置多個圖像,區別是,前者是將後面plot語句生成的圖像按行填充,然後者是按列填充。

#按行填充
par(mfrow = c(2,2)) 
plot(shop$ads, shop$sales) 
plot(shop$comp, shop$sales) 
plot(shop$inv, shop$sales) 
plot(shop$size_dist, shop$sales)

#按列填充
par(mfcol = c(2,2)) 
plot(shop$ads, shop$sales) 
plot(shop$comp, shop$sales) 
plot(shop$inv, shop$sales) 
plot(shop$size_dist, shop$sales)

Reset the grid

par(mfrow = c(1,1))

相較於這個,layout()函數設置的更爲靈活。

grid <- matrix(c(1, 1, 2, 3), nrow = 2, 
         ncol = 2, byrow = TRUE) 
layout(grid)
plot(shop$ads, shop$sales) #放在grid的1號位置
plot(shop$comp, shop$sales) #放在grid的2號位置
plot(shop$inv, shop$sales) #放在grid的3號位置

Reset the grid

layout(1) 
par(mfcol = c(1,1))

Reset all parameters

old_par <- par() 
par(col = "red") 
plot(shop$ads, shop$sales) 
par(old_par) 
plot(shop$ads, shop$sales)

線性擬合

引出函數lm() —— linear
model
,**lm(a~b)就是對a=k*b+c進行線性擬合**

plot(shop$ads, shop$sales, 
      pch = 16, col = 2, 
      xlab = "advertisement", 
      ylab = "net sales")
lm_sales <- lm(shop$sales ~ shop$ads)
abline(coef(lm_sales), lwd = 2) #取模型係數,線寬爲2,畫直線
相關文章
相關標籤/搜索