join 用於多表中字段之間的聯繫,語法以下:mysql
... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona
table1:左表;table2:右表。sql
JOIN 按照功能大體分爲以下三類:數據庫
INNER JOIN(內鏈接,或等值鏈接):取得兩個表中存在鏈接匹配關係的記錄。性能優化
LEFT JOIN(左鏈接):取得左表(table1)徹底記錄,便是右表(table2)並沒有對應匹配記錄。性能
RIGHT JOIN(右鏈接):與 LEFT JOIN 相反,取得右表(table2)徹底記錄,便是左表(table1)並沒有匹配對應記錄。測試
注意:mysql不支持Full join,不過能夠經過UNION 關鍵字來合併 LEFT JOIN 與 RIGHT JOIN來模擬FULL join.優化
接下來給出一個列子用於解釋下面幾種分類。以下兩個表(A,B)spa
mysql> select A.id,A.name,B.name from A,B where A.id=B.id; +----+-----------+-------------+ | id | name | name | +----+-----------+-------------+ | 1 | Pirate | Rutabaga | | 2 | Monkey | Pirate | | 3 | Ninja | Darth Vader | | 4 | Spaghetti | Ninja | +----+-----------+-------------+ 4 rows in set (0.00 sec)
內鏈接,也叫等值鏈接,inner join產生同時符合A和B的一組數據。.net
mysql> select * from A inner join B on A.name = B.name; +----+--------+----+--------+ | id | name | id | name | +----+--------+----+--------+ | 1 | Pirate | 2 | Pirate | | 3 | Ninja | 4 | Ninja | +----+--------+----+--------+
mysql> select * from A left join B on A.name = B.name; #或者:select * from A left outer join B on A.name = B.name; +----+-----------+------+--------+ | id | name | id | name | +----+-----------+------+--------+ | 1 | Pirate | 2 | Pirate | | 2 | Monkey | NULL | NULL | | 3 | Ninja | 4 | Ninja | | 4 | Spaghetti | NULL | NULL | +----+-----------+------+--------+ 4 rows in set (0.00 sec)
left join,(或left outer join:在Mysql中二者等價,推薦使用left join.)左鏈接從左表(A)產生一套完整的記錄,與匹配的記錄(右表(B)) .若是沒有匹配,右側將包含null。3d
若是想只從左表(A)中產生一套記錄,但不包含右表(B)的記錄,能夠經過設置where語句來執行,以下:
mysql> select * from A left join B on A.name=B.name where A.id is null or B.id is null; +----+-----------+------+------+ | id | name | id | name | +----+-----------+------+------+ | 2 | Monkey | NULL | NULL | | 4 | Spaghetti | NULL | NULL | +----+-----------+------+------+ 2 rows in set (0.00 sec)
同理,還能夠模擬inner join. 以下:
mysql> select * from A left join B on A.name=B.name where A.id is not null and B.id is not null; +----+--------+------+--------+ | id | name | id | name | +----+--------+------+--------+ | 1 | Pirate | 2 | Pirate | | 3 | Ninja | 4 | Ninja | +----+--------+------+--------+ 2 rows in set (0.00 sec)
求差集:
根據上面的例子能夠求差集,以下:
SELECT * FROM A LEFT JOIN B ON A.name = B.name WHERE B.id IS NULL union SELECT * FROM A right JOIN B ON A.name = B.name WHERE A.id IS NULL; # 結果 +------+-----------+------+-------------+ | id | name | id | name | +------+-----------+------+-------------+ | 2 | Monkey | NULL | NULL | | 4 | Spaghetti | NULL | NULL | | NULL | NULL | 1 | Rutabaga | | NULL | NULL | 3 | Darth Vader | +------+-----------+------+-------------+
mysql> select * from A right join B on A.name = B.name;
+------+--------+----+-------------+
| id | name | id | name | +------+--------+----+-------------+ | NULL | NULL | 1 | Rutabaga | | 1 | Pirate | 2 | Pirate | | NULL | NULL | 3 | Darth Vader | | 3 | Ninja | 4 | Ninja | +------+--------+----+-------------+ 4 rows in set (0.00 sec)
同left join。
cross join:交叉鏈接,獲得的結果是兩個表的乘積,即笛卡爾積
笛卡爾(Descartes)乘積又叫直積。假設集合A={a,b},集合B={0,1,2},則兩個集合的笛卡爾積爲{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。能夠擴展到多個集合的狀況。相似的例子有,若是A表示某學校學生的集合,B表示該學校全部課程的集合,則A與B的笛卡爾積表示全部可能的選課狀況。
mysql> select * from A cross join B; +----+-----------+----+-------------+ | id | name | id | name | +----+-----------+----+-------------+ | 1 | Pirate | 1 | Rutabaga | | 2 | Monkey | 1 | Rutabaga | | 3 | Ninja | 1 | Rutabaga | | 4 | Spaghetti | 1 | Rutabaga | | 1 | Pirate | 2 | Pirate | | 2 | Monkey | 2 | Pirate | | 3 | Ninja | 2 | Pirate | | 4 | Spaghetti | 2 | Pirate | | 1 | Pirate | 3 | Darth Vader | | 2 | Monkey | 3 | Darth Vader | | 3 | Ninja | 3 | Darth Vader | | 4 | Spaghetti | 3 | Darth Vader | | 1 | Pirate | 4 | Ninja | | 2 | Monkey | 4 | Ninja | | 3 | Ninja | 4 | Ninja | | 4 | Spaghetti | 4 | Ninja | +----+-----------+----+-------------+ 16 rows in set (0.00 sec) #再執行:mysql> select * from A inner join B; 試一試 #在執行mysql> select * from A cross join B on A.name = B.name; 試一試
實際上,在 MySQL 中(僅限於 MySQL) CROSS JOIN 與 INNER JOIN 的表現是同樣的,在不指定 ON 條件獲得的結果都是笛卡爾積,反之取得兩個表徹底匹配的結果。
INNER JOIN 與 CROSS JOIN 能夠省略 INNER 或 CROSS 關鍵字,所以下面的 SQL 效果是同樣的:
... FROM table1 INNER JOIN table2 ... FROM table1 CROSS JOIN table2 ... FROM table1 JOIN table2
mysql> select * from A left join B on B.name = A.name
-> union -> select * from A right join B on B.name = A.name; +------+-----------+------+-------------+ | id | name | id | name | +------+-----------+------+-------------+ | 1 | Pirate | 2 | Pirate | | 2 | Monkey | NULL | NULL | | 3 | Ninja | 4 | Ninja | | 4 | Spaghetti | NULL | NULL | | NULL | NULL | 1 | Rutabaga | | NULL | NULL | 3 | Darth Vader | +------+-----------+------+-------------+ 6 rows in set (0.00 sec)
全鏈接產生的全部記錄(雙方匹配記錄)在表A和表B。若是沒有匹配,則對面將包含null。
如:
select * from table a inner join table b on a.id = b.id;
VS
select a.*, b.* from table a, table b where a.id = b.id;
我在數據庫中比較(10w數據)得之,它們用時幾乎相同,第一個是顯示的inner join,後一個是隱式的inner join。
參照:Explicit vs implicit SQL joins
儘可能用inner join.避免 LEFT JOIN 和 NULL.
在使用left join(或right join)時,應該清楚的知道如下幾點:
ON 條件(「A LEFT JOIN B ON 條件表達式」中的ON)用來決定如何從 B 表中檢索數據行。若是 B 表中沒有任何一行數據匹配 ON 的條件,將會額外生成一行全部列爲 NULL 的數據,在匹配階段 WHERE 子句的條件都不會被使用。僅在匹配階段完成之後,WHERE 子句條件纔會被使用。它將從匹配階段產生的數據中檢索過濾。
因此咱們要注意:在使用Left (right) join的時候,必定要在先給出儘量多的匹配知足條件,減小Where的執行。如:
PS, 這部分有些不妥,感謝 wxweven 指正:
這部分的內容,博主寫的有些欠穩當,不知道博主有沒有實際運行測試過,下面說說個人見解:
(1)首先關於on和where的用法,若是直接把where裏面的條件拿到on裏面去,結果是跟原來的不一致的,因此博主說的「在使用Left (right) join的時候,必定要在先給出儘量多的匹配知足條件,減小Where的執行」是不成立的,由於篩選條件放在on或者where,產生的是不一樣的結果,不能說爲了性能就把where中的條件放到on中。
PASS
select * from A inner join B on B.name = A.name left join C on C.name = B.name left join D on D.id = C.id where C.status>1 and D.status=1;
Great
select * from A inner join B on B.name = A.name left join C on C.name = B.name and C.status>1 left join D on D.id = C.id and D.status=1
從上面例子能夠看出,儘量知足ON的條件,而少用Where的條件。從執行性能來看第二個顯然更加省時。
如做者舉了一個列子:
mysql> SELECT * FROM product LEFT JOIN product_details
ON (product.id = product_details.id)
AND product_details.id=2; +----+--------+------+--------+-------+ | id | amount | id | weight | exist | +----+--------+------+--------+-------+ | 1 | 100 | NULL | NULL | NULL | | 2 | 200 | 2 | 22 | 0 | | 3 | 300 | NULL | NULL | NULL | | 4 | 400 | NULL | NULL | NULL | +----+--------+------+--------+-------+ 4 rows in set (0.00 sec) mysql> SELECT * FROM product LEFT JOIN product_details ON (product.id = product_details.id) WHERE product_details.id=2; +----+--------+----+--------+-------+ | id | amount | id | weight | exist | +----+--------+----+--------+-------+ | 2 | 200 | 2 | 22 | 0 | +----+--------+----+--------+-------+ 1 row in set (0.01 sec)
從上可知,第一條查詢使用 ON 條件決定了從 LEFT JOIN的 product_details表中檢索符合的全部數據行。第二條查詢作了簡單的LEFT JOIN,而後使用 WHERE 子句從 LEFT JOIN的數據中過濾掉不符合條件的數據行。
每每性能這玩意兒,更多時候體如今數據量比較大的時候,此時,咱們應該避免複雜的子查詢。以下:
PASS
insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id);
Great
insert into t1(a1) select b1 from t2 left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id where t1.id is null;
這個能夠參考mysql的exists與inner join 和 not exists與 left join 性能差異驚人
本文章原文連接: https://blog.csdn.net/lcs353732057/article/details/78296356