機器學習之數據預處理——降噪

機器學習之數據預處理——降噪

1.降噪方法
在這裏插入圖片描述在這裏插入圖片描述在這裏插入圖片描述在這裏插入圖片描述
在這裏插入圖片描述html

money=[800,1000,1200,1500,1600,1800,2000,2300,\
       2500,2800,3000,3500,4000,4500,4800,5000]
cut1=pd.cut(pd.Series(money), bins=[0,1000,2000,3000,4000,5000])#設定分箱區間
#0能夠寫,也能夠不寫
print(pd.value_counts(cut1))
cut3=pd.qcut(pd.Series(money), 4)#設定分箱數,每組數據量相同
print(pd.value_counts(cut3))

2.分箱平滑
在這裏插入圖片描述
在這裏插入圖片描述python

#平滑噪聲—等深分箱—均值平滑
import pandas as pd
import numpy as np
def aequilatus_box_mean(data,bins):
    length=data.shape[0]
    labels=[]
    for i in range(bins):
        labels.append('a'+str(i+1))#添加標籤
    new_data=pd.qcut(data.iloc[:,0],bins,labels=labels)#等深分箱
    data['label']=new_data
    for label in labels:
        label_index_min=data[data.label==label].index.min()#分箱後索引最小值
        label_index_max=data[data.label==label].index.max()#分箱後索引最大值
        data.loc[label_index_min:label_index_max,data.columns[0]]=np.mean(
            data.A[label_index_min:label_index_max+1,])#根據label及索引,修改A爲各箱均值
    return data

if __name__=="__main__":
    data=pd.DataFrame({'A':[11,13,15,20,20,23,26,29,35]})
    bins=3
    print("均值平滑")
    print(aequilatus_box_mean(data,3))

 

在這裏插入圖片描述

#平滑噪聲—等深分箱—中值平滑
import pandas as pd
import numpy as np
def aequilatus_box_median(data,bins):
    length=data.shape[0]
    labels=[]
    for i in range(bins):
        labels.append('a'+str(i+1))
    new_data=pd.qcut(data.A,bins,labels=labels)#等深分箱
    data['label']=new_data
    for label in labels:
        label_index_min=data[data.label==label].index.min()#分箱後索引最小值
        label_index_max=data[data.label==label].index.max()#分箱後索引最大值
        data.loc[label_index_min:label_index_max,'A']=np.median(
            data.A[label_index_min:label_index_max+1,])#根據label及索引,修改A爲各箱均值
    return data
if __name__=="__main__":
    data=pd.DataFrame({'A':[11,13,15,20,20,23,26,29,35]})
    bins=3
    print("中值平滑")
    print(aequilatus_box_median(data,3))

在這裏插入圖片描述

#平滑噪聲—等深分箱—邊界平滑
import pandas as pd
import numpy as np
def aequilatus_box_border(data,bins):
    length=data.shape[0]
    labels=[]
    for i in range(bins):
        labels.append('a'+str(i+1))
    new_data=pd.qcut(data.A,bins,labels=labels)#等深分箱
    data['label']=new_data
    for label in labels:
        label_index_min=data[data.label==label].index.min()
        label_index_max=data[data.label==label].index.max()
        data_min=np.min(data.A[label_index_min:label_index_max+1,])
        data_max=np.max(data.A[label_index_min:label_index_max+1,])
        for i in range(label_index_min,label_index_max): 
            if(data.loc[i,'A']==data_min or data.loc[i,'A']==data_max):
                data.loc[i,'A']=data.loc[i,'A']
            elif(np.abs(data.loc[i,'A']-data_min)<=np.abs(data.loc[i,'A']-data_max)):
                 data.loc[i,'A']=data_min
            else:
                data.loc[i,'A']=data_max
    return data   
if __name__=="__main__":
    data=pd.DataFrame({'A':[11,12,15,21,20,23,26,29,35]})
    bins=3
    print("邊界平滑")
    print(aequilatus_box_border(data,3))

在這裏插入圖片描述

編寫打磨課件不易,走過路過別忘記給咱點個贊,小女子在此(❁´ω`❁)謝過!如需轉載,請註明出處,Thanks♪(・ω・)ノapp

參考文獻:

1.https://blog.csdn.net/weixin_40192436/article/details/86706231機器學習

2.https://www.cnblogs.com/serena45/p/5559122.html學習

3.https://www.jianshu.com/p/389682aa5429ui

最後:

對Python感興趣的能夠和我一塊兒交流:點擊連接加入羣聊【python交流羣】:spa

相關文章
相關標籤/搜索