新年新氣象,也但願新年能夠掙大錢。無論今年年末會不會跟去年同樣,滿懷抱負卻又壯志未酬。(不過沒事,我已爲各位卜上一卦,卦象顯示各位都能掙錢...)。已經上班兩天了,公司大部分人還在休假,而我早已上班,估計今年我就是加班狗的命。(不說了,要堅強...)html
以上扯淡已畢,下面言歸正傳。git
此次的.NET加密解析系列中,前面已經講解了散列加密、對稱加密、數字簽名三種加密方式,在這篇博文種,將會主要講解非對稱加密的原理,以及非對稱加密在.NET種的應用。算法
前面講解過對稱加密,對稱加密中加密和解密的密鑰是相同的,可是正由於如此,這會給協商過程帶來潛在的危險。因此產生了非對稱加密方式。數組
非對稱加密算法須要兩個密鑰,分別是公鑰和私鑰。公鑰和私鑰是一對,若是公鑰對數據進行加密,只有使用私鑰才能夠進行解密,反之亦然。對於非對稱加密的原理有以下圖:安全
以上是大體說明了消息利用非對稱加密和解密的方式,解析來咱們再來看一下若是生成密鑰對。非對稱加密算法包含一個「密鑰生成」協議,用戶可使用該協議生成密鑰對。有以下圖:app
在非對稱加密算法中,使用兩個有關的函數,一個是加密函數,使用一個公鑰加密消息,加密函數只能加密數據;一個時解密函數,使用一個私鑰來解密被響應公鑰加密的消息。dom
非對稱加密算法中,採用加密函數和解密函數,加密函數只能加密函數,解密函數只能解密函數。加密函數的單向性意味着一個發送者建立的消息不能被另外一個發送者閱讀。非對稱加密相對於對稱加密來講,非對稱加密的速度很是慢,並且不適用於加密大量數據,公鑰加密(非對稱加密)是用來爲對稱加密算法解決密鑰協商的問題而產生的。RSA算法中指定密鑰長度爲最小的位數,這些位的個數使用二進制數表示密鑰係數N的值。ide
對於非對稱加密算法的種類,有以下圖:函數
RSA算法:此算法是基於數論的非對稱密碼體制,採用分組加密方式。安全性是基於大整數因子分解的困難性,RSA算法是第一個既能用於數據加密也能用與數字簽名的算法。oop
DSA算法(數字簽名算法):次算法是基於證書有限域離散對數難題。
ECC算法(橢圓曲線密碼體制):橢圓曲線指的是由維爾斯特拉斯方程所肯定的平面曲線。
Diffie-Hellman算法:該算法自己限於密鑰交換的用途,目的在於使得兩個用戶安全地交換一個祕密密鑰以便用與之後的報文加密。該算法依賴於計算離散對數的難度。
以上是簡單介紹了一些算法,沒有更加深刻的介紹其算法原理,因爲涉及的知識面比較廣,分析起來比較的繁瑣,在這裏就不作講解,若是有興趣能夠自行學習和了解。
上面簡單敘述了非對稱加密的原理,在這裏主要介紹非對稱加密算法在.NET種的應用,以及實現該算法所建立的對象。在這裏主要介紹RSA算法的核心對象。
在.NET種對於非對稱加密算法的結構體系有以下圖:
(1).Create():建立用於執行非對稱算法的默認加密對象。
public static AsymmetricAlgorithm Create() { return AsymmetricAlgorithm.Create("System.Security.Cryptography.AsymmetricAlgorithm"); }
該方法返回新的 RSACryptoServiceProvider 實例,除非已使用 <cryptoClass> 元素更改默認設置。
public static AsymmetricAlgorithm Create(string algName) { return (AsymmetricAlgorithm) CryptoConfig.CreateFromName(algName); }
該方法返回所指定的非對稱算法實現的新實例。接收參數爲要使用的非對稱算法實現。CryptoConfig.CreateFromName()該方法在前面的加密方式中已經作過解析,這裏就不作介紹了。
(2).KeySize:獲取或設置非對稱算法所用密鑰模塊的大小(以位爲單位)。
public virtual int KeySize { get { return this.KeySizeValue; } set { for (int index = 0; index < this.LegalKeySizesValue.Length; ++index) { if (this.LegalKeySizesValue[index].SkipSize == 0) { if (this.LegalKeySizesValue[index].MinSize == value) { this.KeySizeValue = value; return; } } else { int minSize = this.LegalKeySizesValue[index].MinSize; while (minSize <= this.LegalKeySizesValue[index].MaxSize) { if (minSize == value) { this.KeySizeValue = value; return; } minSize += this.LegalKeySizesValue[index].SkipSize; } } } throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidKeySize")); } }
由以上代碼能夠發現,該屬性具備get和set兩個構造器,說明該屬性是可讀可寫的。該屬性返回非對稱算法所用密鑰模塊的大小(以位爲單位)。
(1).FromXmlString():經過 XML 字符串中的密鑰信息初始化Cryptography.RSA對象。
public override void FromXmlString(string xmlString) { if (xmlString == null) throw new ArgumentNullException("xmlString"); RSAParameters parameters = new RSAParameters(); SecurityElement topElement = new Parser(xmlString).GetTopElement(); string inputBuffer1 = topElement.SearchForTextOfLocalName("Modulus"); if (inputBuffer1 == null) { string key = "Cryptography_InvalidFromXmlString"; object[] objArray = new object[2]; int index1 = 0; string str1 = "RSA"; objArray[index1] = (object) str1; int index2 = 1; string str2 = "Modulus"; objArray[index2] = (object) str2; throw new CryptographicException(Environment.GetResourceString(key, objArray)); } parameters.Modulus = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer1)); string inputBuffer2 = topElement.SearchForTextOfLocalName("Exponent"); if (inputBuffer2 == null) { string key = "Cryptography_InvalidFromXmlString"; object[] objArray = new object[2]; int index1 = 0; string str1 = "RSA"; objArray[index1] = (object) str1; int index2 = 1; string str2 = "Exponent"; objArray[index2] = (object) str2; throw new CryptographicException(Environment.GetResourceString(key, objArray)); } parameters.Exponent = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer2)); string inputBuffer3 = topElement.SearchForTextOfLocalName("P"); if (inputBuffer3 != null) parameters.P = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer3)); string inputBuffer4 = topElement.SearchForTextOfLocalName("Q"); if (inputBuffer4 != null) parameters.Q = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer4)); string inputBuffer5 = topElement.SearchForTextOfLocalName("DP"); if (inputBuffer5 != null) parameters.DP = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer5)); string inputBuffer6 = topElement.SearchForTextOfLocalName("DQ"); if (inputBuffer6 != null) parameters.DQ = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer6)); string inputBuffer7 = topElement.SearchForTextOfLocalName("InverseQ"); if (inputBuffer7 != null) parameters.InverseQ = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer7)); string inputBuffer8 = topElement.SearchForTextOfLocalName("D"); if (inputBuffer8 != null) parameters.D = Convert.FromBase64String(Utils.DiscardWhiteSpaces(inputBuffer8)); this.ImportParameters(parameters); }
該方法是繼承自AsymmetricAlgorithm類,在RSA類種被重寫,該方法接收參數包含 RSA 密鑰信息的 XML 字符串。SecurityElement類表示用於編碼安全對象的XML對象模型。
(2).ToXmlString():建立並返回包含當前 RSA 對象的密鑰的 XML 字符串。
public override string ToXmlString(bool includePrivateParameters) { RSAParameters rsaParameters = this.ExportParameters(includePrivateParameters); StringBuilder stringBuilder = new StringBuilder(); stringBuilder.Append("<RSAKeyValue>"); stringBuilder.Append("<Modulus>" + Convert.ToBase64String(rsaParameters.Modulus) + "</Modulus>"); stringBuilder.Append("<Exponent>" + Convert.ToBase64String(rsaParameters.Exponent) + "</Exponent>"); if (includePrivateParameters) { stringBuilder.Append("<P>" + Convert.ToBase64String(rsaParameters.P) + "</P>"); stringBuilder.Append("<Q>" + Convert.ToBase64String(rsaParameters.Q) + "</Q>"); stringBuilder.Append("<DP>" + Convert.ToBase64String(rsaParameters.DP) + "</DP>"); stringBuilder.Append("<DQ>" + Convert.ToBase64String(rsaParameters.DQ) + "</DQ>"); stringBuilder.Append("<InverseQ>" + Convert.ToBase64String(rsaParameters.InverseQ) + "</InverseQ>"); stringBuilder.Append("<D>" + Convert.ToBase64String(rsaParameters.D) + "</D>"); } stringBuilder.Append("</RSAKeyValue>"); return stringBuilder.ToString(); }
該方法一樣繼承自AsymmetricAlgorithm類,該方法接收一個布爾型的參數,true 表示同時包含 RSA 公鑰和私鑰;false 表示僅包含公鑰。該方法返回包含當前 RSA 對象的密鑰的 XML 字符串。RSAParameters爲一個結構,表示System.Security.Cryptography.RSA算法的標準參數。
(1).Encrypt():使用 RSA算法對數據進行加密。
[SecuritySafeCritical] public byte[] Encrypt(byte[] rgb, bool fOAEP) { if (rgb == null) throw new ArgumentNullException("rgb"); this.GetKeyPair(); byte[] o = (byte[]) null; RSACryptoServiceProvider.EncryptKey(this._safeKeyHandle, rgb, rgb.Length, fOAEP, JitHelpers.GetObjectHandleOnStack<byte[]>(ref o)); return o; }
該方法接受兩個參數,要加密的數據。fOAEP若是爲 true,則使用 OAEP 填充(僅在運行 Microsoft Windows XP 或更高版本的計算機上可用)執行直接的 RSA 加密;不然,若是爲 false,則使用 PKCS#1 1.5 版填充。該方法返回一個已加密的數據,爲一個字節數組。
(2).Decrypt():使用 RSA算法對數據進行解密。
[SecuritySafeCritical] public byte[] Decrypt(byte[] rgb, bool fOAEP) { if (rgb == null) throw new ArgumentNullException("rgb"); this.GetKeyPair(); if (rgb.Length > this.KeySize / 8) { string key = "Cryptography_Padding_DecDataTooBig"; object[] objArray = new object[1]; int index = 0; // ISSUE: variable of a boxed type __Boxed<int> local = (ValueType) (this.KeySize / 8); objArray[index] = (object) local; throw new CryptographicException(Environment.GetResourceString(key, objArray)); } if (!this.CspKeyContainerInfo.RandomlyGenerated && !CompatibilitySwitches.IsAppEarlierThanWindowsPhone8) { KeyContainerPermission containerPermission = new KeyContainerPermission(KeyContainerPermissionFlags.NoFlags); KeyContainerPermissionAccessEntry accessEntry = new KeyContainerPermissionAccessEntry(this._parameters, KeyContainerPermissionFlags.Decrypt); containerPermission.AccessEntries.Add(accessEntry); containerPermission.Demand(); } byte[] o = (byte[]) null; RSACryptoServiceProvider.DecryptKey(this._safeKeyHandle, rgb, rgb.Length, fOAEP, JitHelpers.GetObjectHandleOnStack<byte[]>(ref o)); return o; }
該方法接受兩個參數,rgb要解密的數據。fOAEP若是爲 true,則使用 OAEP 填充(僅在運行 Microsoft Windows XP 或更高版本的計算機上可用)執行直接的 <see cref="T:System.Security.Cryptography.RSA"/> 解密;不然,若是爲 false,則使用 PKCS#1 1.5 版填充。該方法返回 已解密的數據,它是加密前的原始純文本。
using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptography; using System.Text; namespace BasicMmethodExtensionClass.EncryptHelper { /// <summary> /// 非對稱RSA加密類 /// 須要BigInteger類來輔助 /// </summary> public static class RsaHelper { /// <summary> /// RSA的容器 能夠解密的源字符串長度爲 DWKEYSIZE/8-11 /// </summary> public const int Dwkeysize = 1024; /// <summary> /// RSA加密的密匙結構 公鑰和私匙 /// </summary> public struct RsaKey { public string PublicKey { get; set; } public string PrivateKey { get; set; } } /// <summary> /// 獲得RSA的解謎的密匙對 /// </summary> /// <returns></returns> public static RsaKey GetRasKey() { RSACryptoServiceProvider.UseMachineKeyStore = true; //聲明一個指定大小的RSA容器 RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(Dwkeysize); //取得RSA容易裏的各類參數 RSAParameters p = rsaProvider.ExportParameters(true); return new RsaKey { PublicKey = ComponentKey(p.Exponent, p.Modulus), PrivateKey = ComponentKey(p.D, p.Modulus) }; } /// <summary> /// 檢查明文的有效性 DWKEYSIZE/8-11 長度以內爲有效 中英文都算一個字符 /// </summary> /// <param name="source"></param> /// <returns></returns> public static bool CheckSourceValidate(string source) { return (Dwkeysize / 8 - 11) >= source.Length; } /// <summary> /// 組合成密匙字符串 /// </summary> /// <param name="b1"></param> /// <param name="b2"></param> /// <returns></returns> private static string ComponentKey(byte[] b1, byte[] b2) { var list = new List<byte> { (byte) b1.Length }; list.AddRange(b1); list.AddRange(b2); var b = list.ToArray<byte>(); return Convert.ToBase64String(b); } /// <summary> /// 解析密匙 /// </summary> /// <param name="key">密匙</param> /// <param name="b1">RSA的相應參數1</param> /// <param name="b2">RSA的相應參數2</param> private static void ResolveKey(string key, out byte[] b1, out byte[] b2) { //從base64字符串 解析成原來的字節數組 byte[] b = Convert.FromBase64String(key); //初始化參數的數組長度 b1 = new byte[b[0]]; b2 = new byte[b.Length - b[0] - 1]; //將相應位置是值放進相應的數組 for (int n = 1, i = 0, j = 0; n < b.Length; n++) { if (n <= b[0]) { b1[i++] = b[n]; } else { b2[j++] = b[n]; } } } /// <summary> /// 字符串加密 /// </summary> /// <param name="source">源字符串 明文</param> /// <param name="key">密匙</param> /// <returns>加密遇到錯誤將會返回原字符串</returns> public static string EncryptString(string source, string key) { string encryptString; try { if (!CheckSourceValidate(source)) { throw new Exception("明文太長"); } //解析這個密鑰 byte[] d; byte[] n; ResolveKey(key, out d, out n); var biN = new BigInteger(n); var biD = new BigInteger(d); encryptString = EncryptString(source, biD, biN); } catch { encryptString = source; } return encryptString; } /// <summary> /// 字符串解密 /// </summary> /// <param name="encryptString">密文</param> /// <param name="key">密鑰</param> /// <returns>遇到解密失敗將會返回原字符串</returns> public static string DecryptString(string encryptString, string key) { string source; try { //解析這個密鑰 byte[] e; byte[] n; ResolveKey(key, out e, out n); var biE = new BigInteger(e); var biN = new BigInteger(n); source = DecryptString(encryptString, biE, biN); } catch { source = encryptString; } return source; } /// <summary> /// 用指定的密匙加密 /// </summary> /// <param name="source">明文</param> /// <param name="d">能夠是RSACryptoServiceProvider生成的D</param> /// <param name="n">能夠是RSACryptoServiceProvider生成的Modulus</param> /// <returns>返回密文</returns> private static string EncryptString(string source, BigInteger d, BigInteger n) { var len = source.Length; int len1; if ((len % 128) == 0) len1 = len / 128; else len1 = len / 128 + 1; var result = new StringBuilder(); for (var i = 0; i < len1; i++) { var blockLen = len >= 128 ? 128 : len; var block = source.Substring(i * 128, blockLen); byte[] oText = Encoding.UTF8.GetBytes(block); var biText = new BigInteger(oText); var biEnText = biText.modPow(d, n); var temp = biEnText.ToHexString(); result.Append(temp).Append("@"); len -= blockLen; } return result.ToString().TrimEnd('@'); } /// <summary> /// 用指定的密匙加密 /// </summary> /// <param name="encryptString"></param> /// <param name="e">能夠是RSACryptoServiceProvider生成的Exponent</param> /// <param name="n">能夠是RSACryptoServiceProvider生成的Modulus</param> /// <returns>返回明文</returns> private static string DecryptString(string encryptString, BigInteger e, BigInteger n) { var result = new StringBuilder(); var strarr1 = encryptString.Split(new[] { '@' }, StringSplitOptions.RemoveEmptyEntries); foreach (var block in strarr1) { var biText = new BigInteger(block, 16); var biEnText = biText.modPow(e, n); var temp = Encoding.UTF8.GetString(biEnText.getBytes()); result.Append(temp); } return result.ToString(); } } }
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace BasicMmethodExtensionClass.EncryptHelper { public class BigInteger { // maximum length of the BigInteger in uint (4 bytes) // change this to suit the required level of precision. private const int maxLength = 70; // primes smaller than 2000 to test the generated prime number public static readonly int[] primesBelow2000 = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 }; private uint[] data; // stores bytes from the Big Integer public int DataLength; // number of actual chars used //*********************************************************************** // Constructor (Default value for BigInteger is 0 //*********************************************************************** public BigInteger() { data = new uint[maxLength]; DataLength = 1; } //*********************************************************************** // Constructor (Default value provided by long) //*********************************************************************** public BigInteger(long value) { data = new uint[maxLength]; long tempVal = value; // copy bytes from long to BigInteger without any assumption of // the length of the long datatype DataLength = 0; while (value != 0 && DataLength < maxLength) { data[DataLength] = (uint)(value & 0xFFFFFFFF); value >>= 32; DataLength++; } if (tempVal > 0) // overflow check for +ve value { if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) throw (new ArithmeticException("Positive overflow in constructor.")); } else if (tempVal < 0) // underflow check for -ve value { if (value != -1 || (data[DataLength - 1] & 0x80000000) == 0) throw (new ArithmeticException("Negative underflow in constructor.")); } if (DataLength == 0) DataLength = 1; } //*********************************************************************** // Constructor (Default value provided by ulong) //*********************************************************************** public BigInteger(ulong value) { data = new uint[maxLength]; // copy bytes from ulong to BigInteger without any assumption of // the length of the ulong datatype DataLength = 0; while (value != 0 && DataLength < maxLength) { data[DataLength] = (uint)(value & 0xFFFFFFFF); value >>= 32; DataLength++; } if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) throw (new ArithmeticException("Positive overflow in constructor.")); if (DataLength == 0) DataLength = 1; } //*********************************************************************** // Constructor (Default value provided by BigInteger) //*********************************************************************** public BigInteger(BigInteger bi) { data = new uint[maxLength]; DataLength = bi.DataLength; for (int i = 0; i < DataLength; i++) data[i] = bi.data[i]; } //*********************************************************************** // Constructor (Default value provided by a string of digits of the // specified base) // // Example (base 10) // ----------------- // To initialize "a" with the default value of 1234 in base 10 // BigInteger a = new BigInteger("1234", 10) // // To initialize "a" with the default value of -1234 // BigInteger a = new BigInteger("-1234", 10) // // Example (base 16) // ----------------- // To initialize "a" with the default value of 0x1D4F in base 16 // BigInteger a = new BigInteger("1D4F", 16) // // To initialize "a" with the default value of -0x1D4F // BigInteger a = new BigInteger("-1D4F", 16) // // Note that string values are specified in the <sign><magnitude> // format. // //*********************************************************************** public BigInteger(string value, int radix) { BigInteger multiplier = new BigInteger(1); BigInteger result = new BigInteger(); value = (value.ToUpper()).Trim(); int limit = 0; if (value[0] == '-') limit = 1; for (int i = value.Length - 1; i >= limit; i--) { int posVal = (int)value[i]; if (posVal >= '0' && posVal <= '9') posVal -= '0'; else if (posVal >= 'A' && posVal <= 'Z') posVal = (posVal - 'A') + 10; else posVal = 9999999; // arbitrary large if (posVal >= radix) throw (new ArithmeticException("Invalid string in constructor.")); else { if (value[0] == '-') posVal = -posVal; result = result + (multiplier * posVal); if ((i - 1) >= limit) multiplier = multiplier * radix; } } if (value[0] == '-') // negative values { if ((result.data[maxLength - 1] & 0x80000000) == 0) throw (new ArithmeticException("Negative underflow in constructor.")); } else // positive values { if ((result.data[maxLength - 1] & 0x80000000) != 0) throw (new ArithmeticException("Positive overflow in constructor.")); } data = new uint[maxLength]; for (int i = 0; i < result.DataLength; i++) data[i] = result.data[i]; DataLength = result.DataLength; } //*********************************************************************** // Constructor (Default value provided by an array of bytes) // // The lowest index of the input byte array (i.e [0]) should contain the // most significant byte of the number, and the highest index should // contain the least significant byte. // // E.g. // To initialize "a" with the default value of 0x1D4F in base 16 // byte[] temp = { 0x1D, 0x4F }; // BigInteger a = new BigInteger(temp) // // Note that this method of initialization does not allow the // sign to be specified. // //*********************************************************************** public BigInteger(byte[] inData) { DataLength = inData.Length >> 2; int leftOver = inData.Length & 0x3; if (leftOver != 0) // length not multiples of 4 DataLength++; if (DataLength > maxLength) throw (new ArithmeticException("Byte overflow in constructor.")); data = new uint[maxLength]; for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++) { data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) + (inData[i - 1] << 8) + inData[i]); } if (leftOver == 1) data[DataLength - 1] = (uint)inData[0]; else if (leftOver == 2) data[DataLength - 1] = (uint)((inData[0] << 8) + inData[1]); else if (leftOver == 3) data[DataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]); while (DataLength > 1 && data[DataLength - 1] == 0) DataLength--; //Console.WriteLine("Len = " + dataLength); } //*********************************************************************** // Constructor (Default value provided by an array of bytes of the // specified length.) //*********************************************************************** public BigInteger(byte[] inData, int inLen) { DataLength = inLen >> 2; int leftOver = inLen & 0x3; if (leftOver != 0) // length not multiples of 4 DataLength++; if (DataLength > maxLength || inLen > inData.Length) throw (new ArithmeticException("Byte overflow in constructor.")); data = new uint[maxLength]; for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++) { data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) + (inData[i - 1] << 8) + inData[i]); } if (leftOver == 1) data[DataLength - 1] = (uint)inData[0]; else if (leftOver == 2) data[DataLength - 1] = (uint)((inData[0] << 8) + inData[1]); else if (leftOver == 3) data[DataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]); if (DataLength == 0) DataLength = 1; while (DataLength > 1 && data[DataLength - 1] == 0) DataLength--; //Console.WriteLine("Len = " + dataLength); } //*********************************************************************** // Constructor (Default value provided by an array of unsigned integers) //********************************************************************* public BigInteger(uint[] inData) { DataLength = inData.Length; if (DataLength > maxLength) throw (new ArithmeticException("Byte overflow in constructor.")); data = new uint[maxLength]; for (int i = DataLength - 1, j = 0; i >= 0; i--, j++) data[j] = inData[i]; while (DataLength > 1 && data[DataLength - 1] == 0) DataLength--; //Console.WriteLine("Len = " + dataLength); } //*********************************************************************** // Overloading of the typecast operator. // For BigInteger bi = 10; //*********************************************************************** public static implicit operator BigInteger(long value) { return (new BigInteger(value)); } public static implicit operator BigInteger(ulong value) { return (new BigInteger(value)); } public static implicit operator BigInteger(int value) { return (new BigInteger((long)value)); } public static implicit operator BigInteger(uint value) { return (new BigInteger((ulong)value)); } //*********************************************************************** // Overloading of addition operator //*********************************************************************** public static BigInteger operator +(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); result.DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; long carry = 0; for (int i = 0; i < result.DataLength; i++) { long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry; carry = sum >> 32; result.data[i] = (uint)(sum & 0xFFFFFFFF); } if (carry != 0 && result.DataLength < maxLength) { result.data[result.DataLength] = (uint)(carry); result.DataLength++; } while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; // overflow check int lastPos = maxLength - 1; if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException()); } return result; } //*********************************************************************** // Overloading of the unary ++ operator //*********************************************************************** public static BigInteger operator ++(BigInteger bi1) { BigInteger result = new BigInteger(bi1); long val, carry = 1; int index = 0; while (carry != 0 && index < maxLength) { val = (long)(result.data[index]); val++; result.data[index] = (uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } if (index > result.DataLength) result.DataLength = index; else { while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; } // overflow check int lastPos = maxLength - 1; // overflow if initial value was +ve but ++ caused a sign // change to negative. if ((bi1.data[lastPos] & 0x80000000) == 0 && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException("Overflow in ++.")); } return result; } //*********************************************************************** // Overloading of subtraction operator //*********************************************************************** public static BigInteger operator -(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); result.DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; long carryIn = 0; for (int i = 0; i < result.DataLength; i++) { long diff; diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn; result.data[i] = (uint)(diff & 0xFFFFFFFF); if (diff < 0) carryIn = 1; else carryIn = 0; } // roll over to negative if (carryIn != 0) { for (int i = result.DataLength; i < maxLength; i++) result.data[i] = 0xFFFFFFFF; result.DataLength = maxLength; } // fixed in v1.03 to give correct datalength for a - (-b) while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; // overflow check int lastPos = maxLength - 1; if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException()); } return result; } //*********************************************************************** // Overloading of the unary -- operator //*********************************************************************** public static BigInteger operator --(BigInteger bi1) { BigInteger result = new BigInteger(bi1); long val; bool carryIn = true; int index = 0; while (carryIn && index < maxLength) { val = (long)(result.data[index]); val--; result.data[index] = (uint)(val & 0xFFFFFFFF); if (val >= 0) carryIn = false; index++; } if (index > result.DataLength) result.DataLength = index; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; // overflow check int lastPos = maxLength - 1; // overflow if initial value was -ve but -- caused a sign // change to positive. if ((bi1.data[lastPos] & 0x80000000) != 0 && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException("Underflow in --.")); } return result; } //*********************************************************************** // Overloading of multiplication operator //*********************************************************************** public static BigInteger operator *(BigInteger bi1, BigInteger bi2) { int lastPos = maxLength - 1; bool bi1Neg = false, bi2Neg = false; // take the absolute value of the inputs try { if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1Neg = true; bi1 = -bi1; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2Neg = true; bi2 = -bi2; } } catch (Exception) { } BigInteger result = new BigInteger(); // multiply the absolute values try { for (int i = 0; i < bi1.DataLength; i++) { if (bi1.data[i] == 0) continue; ulong mcarry = 0; for (int j = 0, k = i; j < bi2.DataLength; j++, k++) { // k = i + j ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) + (ulong)result.data[k] + mcarry; result.data[k] = (uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if (mcarry != 0) result.data[i + bi2.DataLength] = (uint)mcarry; } } catch (Exception) { throw (new ArithmeticException("Multiplication overflow.")); } result.DataLength = bi1.DataLength + bi2.DataLength; if (result.DataLength > maxLength) result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; // overflow check (result is -ve) if ((result.data[lastPos] & 0x80000000) != 0) { if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) // different sign { // handle the special case where multiplication produces // a max negative number in 2's complement. if (result.DataLength == 1) return result; else { bool isMaxNeg = true; for (int i = 0; i < result.DataLength - 1 && isMaxNeg; i++) { if (result.data[i] != 0) isMaxNeg = false; } if (isMaxNeg) return result; } } throw (new ArithmeticException("Multiplication overflow.")); } // if input has different signs, then result is -ve if (bi1Neg != bi2Neg) return -result; return result; } //*********************************************************************** // Overloading of unary << operators //*********************************************************************** public static BigInteger operator <<(BigInteger bi1, int shiftVal) { BigInteger result = new BigInteger(bi1); result.DataLength = shiftLeft(result.data, shiftVal); return result; } // least significant bits at lower part of buffer private static int shiftLeft(uint[] buffer, int shiftVal) { int shiftAmount = 32; int bufLen = buffer.Length; while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; for (int count = shiftVal; count > 0;) { if (count < shiftAmount) shiftAmount = count; //Console.WriteLine("shiftAmount = {0}", shiftAmount); ulong carry = 0; for (int i = 0; i < bufLen; i++) { ulong val = ((ulong)buffer[i]) << shiftAmount; val |= carry; buffer[i] = (uint)(val & 0xFFFFFFFF); carry = val >> 32; } if (carry != 0) { if (bufLen + 1 <= buffer.Length) { buffer[bufLen] = (uint)carry; bufLen++; } } count -= shiftAmount; } return bufLen; } //*********************************************************************** // Overloading of unary >> operators //*********************************************************************** public static BigInteger operator >>(BigInteger bi1, int shiftVal) { BigInteger result = new BigInteger(bi1); result.DataLength = shiftRight(result.data, shiftVal); if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative { for (int i = maxLength - 1; i >= result.DataLength; i--) result.data[i] = 0xFFFFFFFF; uint mask = 0x80000000; for (int i = 0; i < 32; i++) { if ((result.data[result.DataLength - 1] & mask) != 0) break; result.data[result.DataLength - 1] |= mask; mask >>= 1; } result.DataLength = maxLength; } return result; } private static int shiftRight(uint[] buffer, int shiftVal) { int shiftAmount = 32; int invShift = 0; int bufLen = buffer.Length; while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length); for (int count = shiftVal; count > 0;) { if (count < shiftAmount) { shiftAmount = count; invShift = 32 - shiftAmount; } //Console.WriteLine("shiftAmount = {0}", shiftAmount); ulong carry = 0; for (int i = bufLen - 1; i >= 0; i--) { ulong val = ((ulong)buffer[i]) >> shiftAmount; val |= carry; carry = ((ulong)buffer[i]) << invShift; buffer[i] = (uint)(val); } count -= shiftAmount; } while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; return bufLen; } //*********************************************************************** // Overloading of the NOT operator (1's complement) //*********************************************************************** public static BigInteger operator ~(BigInteger bi1) { BigInteger result = new BigInteger(bi1); for (int i = 0; i < maxLength; i++) result.data[i] = (uint)(~(bi1.data[i])); result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; return result; } //*********************************************************************** // Overloading of the NEGATE operator (2's complement) //*********************************************************************** public static BigInteger operator -(BigInteger bi1) { // handle neg of zero separately since it'll cause an overflow // if we proceed. if (bi1.DataLength == 1 && bi1.data[0] == 0) return (new BigInteger()); BigInteger result = new BigInteger(bi1); // 1's complement for (int i = 0; i < maxLength; i++) result.data[i] = (uint)(~(bi1.data[i])); // add one to result of 1's complement long val, carry = 1; int index = 0; while (carry != 0 && index < maxLength) { val = (long)(result.data[index]); val++; result.data[index] = (uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000)) throw (new ArithmeticException("Overflow in negation.\n")); result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; return result; } //*********************************************************************** // Overloading of equality operator //*********************************************************************** public static bool operator ==(BigInteger bi1, BigInteger bi2) { return bi1.Equals(bi2); } public static bool operator !=(BigInteger bi1, BigInteger bi2) { return !(bi1.Equals(bi2)); } public override bool Equals(object o) { BigInteger bi = (BigInteger)o; if (this.DataLength != bi.DataLength) return false; for (int i = 0; i < this.DataLength; i++) { if (this.data[i] != bi.data[i]) return false; } return true; } public override int GetHashCode() { return this.ToString().GetHashCode(); } //*********************************************************************** // Overloading of inequality operator //*********************************************************************** public static bool operator >(BigInteger bi1, BigInteger bi2) { int pos = maxLength - 1; // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return false; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return true; // same sign int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] > bi2.data[pos]) return true; return false; } return false; } public static bool operator <(BigInteger bi1, BigInteger bi2) { int pos = maxLength - 1; // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return true; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return false; // same sign int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] < bi2.data[pos]) return true; return false; } return false; } public static bool operator >=(BigInteger bi1, BigInteger bi2) { return (bi1 == bi2 || bi1 > bi2); } public static bool operator <=(BigInteger bi1, BigInteger bi2) { return (bi1 == bi2 || bi1 < bi2); } //*********************************************************************** // Private function that supports the division of two numbers with // a divisor that has more than 1 digit. // // Algorithm taken from [1] //*********************************************************************** private static void multiByteDivide(BigInteger bi1, BigInteger bi2, BigInteger outQuotient, BigInteger outRemainder) { uint[] result = new uint[maxLength]; int remainderLen = bi1.DataLength + 1; uint[] remainder = new uint[remainderLen]; uint mask = 0x80000000; uint val = bi2.data[bi2.DataLength - 1]; int shift = 0, resultPos = 0; while (mask != 0 && (val & mask) == 0) { shift++; mask >>= 1; } //Console.WriteLine("shift = {0}", shift); //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength); for (int i = 0; i < bi1.DataLength; i++) remainder[i] = bi1.data[i]; shiftLeft(remainder, shift); bi2 = bi2 << shift; /* Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength); Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2); for(int q = remainderLen - 1; q >= 0; q--) Console.Write("{0:x2}", remainder[q]); Console.WriteLine(); */ int j = remainderLen - bi2.DataLength; int pos = remainderLen - 1; ulong firstDivisorByte = bi2.data[bi2.DataLength - 1]; ulong secondDivisorByte = bi2.data[bi2.DataLength - 2]; int divisorLen = bi2.DataLength + 1; uint[] dividendPart = new uint[divisorLen]; while (j > 0) { ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1]; //Console.WriteLine("dividend = {0}", dividend); ulong q_hat = dividend / firstDivisorByte; ulong r_hat = dividend % firstDivisorByte; //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat); bool done = false; while (!done) { done = true; if (q_hat == 0x100000000 || (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2])) { q_hat--; r_hat += firstDivisorByte; if (r_hat < 0x100000000) done = false; } } for (int h = 0; h < divisorLen; h++) dividendPart[h] = remainder[pos - h]; BigInteger kk = new BigInteger(dividendPart); BigInteger ss = bi2 * (long)q_hat; //Console.WriteLine("ss before = " + ss); while (ss > kk) { q_hat--; ss -= bi2; //Console.WriteLine(ss); } BigInteger yy = kk - ss; //Console.WriteLine("ss = " + ss); //Console.WriteLine("kk = " + kk); //Console.WriteLine("yy = " + yy); for (int h = 0; h < divisorLen; h++) remainder[pos - h] = yy.data[bi2.DataLength - h]; /* Console.WriteLine("dividend = "); for(int q = remainderLen - 1; q >= 0; q--) Console.Write("{0:x2}", remainder[q]); Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat); */ result[resultPos++] = (uint)q_hat; pos--; j--; } outQuotient.DataLength = resultPos; int y = 0; for (int x = outQuotient.DataLength - 1; x >= 0; x--, y++) outQuotient.data[y] = result[x]; for (; y < maxLength; y++) outQuotient.data[y] = 0; while (outQuotient.DataLength > 1 && outQuotient.data[outQuotient.DataLength - 1] == 0) outQuotient.DataLength--; if (outQuotient.DataLength == 0) outQuotient.DataLength = 1; outRemainder.DataLength = shiftRight(remainder, shift); for (y = 0; y < outRemainder.DataLength; y++) outRemainder.data[y] = remainder[y]; for (; y < maxLength; y++) outRemainder.data[y] = 0; } //*********************************************************************** // Private function that supports the division of two numbers with // a divisor that has only 1 digit. //*********************************************************************** private static void singleByteDivide(BigInteger bi1, BigInteger bi2, BigInteger outQuotient, BigInteger outRemainder) { uint[] result = new uint[maxLength]; int resultPos = 0; // copy dividend to reminder for (int i = 0; i < maxLength; i++) outRemainder.data[i] = bi1.data[i]; outRemainder.DataLength = bi1.DataLength; while (outRemainder.DataLength > 1 && outRemainder.data[outRemainder.DataLength - 1] == 0) outRemainder.DataLength--; ulong divisor = (ulong)bi2.data[0]; int pos = outRemainder.DataLength - 1; ulong dividend = (ulong)outRemainder.data[pos]; //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend); //Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1); if (dividend >= divisor) { ulong quotient = dividend / divisor; result[resultPos++] = (uint)quotient; outRemainder.data[pos] = (uint)(dividend % divisor); } pos--; while (pos >= 0) { //Console.WriteLine(pos); dividend = ((ulong)outRemainder.data[pos + 1] << 32) + (ulong)outRemainder.data[pos]; ulong quotient = dividend / divisor; result[resultPos++] = (uint)quotient; outRemainder.data[pos + 1] = 0; outRemainder.data[pos--] = (uint)(dividend % divisor); //Console.WriteLine(">>>> " + bi1); } outQuotient.DataLength = resultPos; int j = 0; for (int i = outQuotient.DataLength - 1; i >= 0; i--, j++) outQuotient.data[j] = result[i]; for (; j < maxLength; j++) outQuotient.data[j] = 0; while (outQuotient.DataLength > 1 && outQuotient.data[outQuotient.DataLength - 1] == 0) outQuotient.DataLength--; if (outQuotient.DataLength == 0) outQuotient.DataLength = 1; while (outRemainder.DataLength > 1 && outRemainder.data[outRemainder.DataLength - 1] == 0) outRemainder.DataLength--; } //*********************************************************************** // Overloading of division operator //*********************************************************************** public static BigInteger operator /(BigInteger bi1, BigInteger bi2) { BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(); int lastPos = maxLength - 1; bool divisorNeg = false, dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2 = -bi2; divisorNeg = true; } if (bi1 < bi2) { return quotient; } else { if (bi2.DataLength == 1) singleByteDivide(bi1, bi2, quotient, remainder); else multiByteDivide(bi1, bi2, quotient, remainder); if (dividendNeg != divisorNeg) return -quotient; return quotient; } } //*********************************************************************** // Overloading of modulus operator //*********************************************************************** public static BigInteger operator %(BigInteger bi1, BigInteger bi2) { BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(bi1); int lastPos = maxLength - 1; bool dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative bi2 = -bi2; if (bi1 < bi2) { return remainder; } else { if (bi2.DataLength == 1) singleByteDivide(bi1, bi2, quotient, remainder); else multiByteDivide(bi1, bi2, quotient, remainder); if (dividendNeg) return -remainder; return remainder; } } //*********************************************************************** // Overloading of bitwise AND operator //*********************************************************************** public static BigInteger operator &(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; for (int i = 0; i < len; i++) { uint sum = (uint)(bi1.data[i] & bi2.data[i]); result.data[i] = sum; } result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; return result; } //*********************************************************************** // Overloading of bitwise OR operator //*********************************************************************** public static BigInteger operator |(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; for (int i = 0; i < len; i++) { uint sum = (uint)(bi1.data[i] | bi2.data[i]); result.data[i] = sum; } result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; return result; } //*********************************************************************** // Overloading of bitwise XOR operator //*********************************************************************** public static BigInteger operator ^(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength; for (int i = 0; i < len; i++) { uint sum = (uint)(bi1.data[i] ^ bi2.data[i]); result.data[i] = sum; } result.DataLength = maxLength; while (result.DataLength > 1 && result.data[result.DataLength - 1] == 0) result.DataLength--; return result; } //*********************************************************************** // Returns max(this, bi) //*********************************************************************** public BigInteger max(BigInteger bi) { if (this > bi) return (new BigInteger(this)); else return (new BigInteger(bi)); } //*********************************************************************** // Returns min(this, bi) //*********************************************************************** public BigInteger min(BigInteger bi) { if (this < bi) return (new BigInteger(this)); else return (new BigInteger(bi)); } //*********************************************************************** // Returns the absolute value //*********************************************************************** public BigInteger abs() { if ((this.data[maxLength - 1] & 0x80000000) != 0) return (-this); else return (new BigInteger(this)); } //*********************************************************************** // Returns a string representing the BigInteger in base 10. //*********************************************************************** public override string ToString() { return ToString(10); } //*********************************************************************** // Returns a string representing the BigInteger in sign-and-magnitude // format in the specified radix. // // Example // ------- // If the value of BigInteger is -255 in base 10, then // ToString(16) returns "-FF" // //*********************************************************************** public string ToString(int radix) { if (radix < 2 || radix > 36) throw (new ArgumentException("Radix must be >= 2 and <= 36")); string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; string result = ""; BigInteger a = this; bool negative = false; if ((a.data[maxLength - 1] & 0x80000000) != 0) { negative = true; try { a = -a; } catch (Exception) { } } BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(); BigInteger biRadix = new BigInteger(radix); if (a.DataLength == 1 && a.data[0] == 0) result = "0"; else { while (a.DataLength > 1 || (a.DataLength == 1 && a.data[0] != 0)) { singleByteDivide(a, biRadix, quotient, remainder); if (remainder.data[0] < 10) result = remainder.data[0] + result; else result = charSet[(int)remainder.data[0] - 10] + result; a = quotient; } if (negative) result = "-" + result; } return result; } //*********************************************************************** // Returns a hex string showing the contains of the BigInteger // // Examples // ------- // 1) If the value of BigInteger is 255 in base 10, then // ToHexString() returns "FF" // // 2) If the value of BigInteger is -255 in base 10, then // ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01", // which is the 2's complement representation of -255. // //*********************************************************************** public string ToHexString() { string result = data[DataLength - 1].ToString("X"); for (int i = DataLength - 2; i >= 0; i--) { result += data[i].ToString("X8"); } return result; } //*********************************************************************** // Modulo Exponentiation //*********************************************************************** public BigInteger modPow(BigInteger exp, BigInteger n) { if ((exp.data[maxLength - 1] & 0x80000000) != 0) throw (new ArithmeticException("Positive exponents only.")); BigInteger resultNum = 1; BigInteger tempNum; bool thisNegative = false; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative this { tempNum = -this % n; thisNegative = true; } else tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k) if ((n.data[maxLength - 1] & 0x80000000) != 0) // negative n n = -n; // calculate constant = b^(2k) / m BigInteger constant = new BigInteger(); int i = n.DataLength << 1; constant.data[i] = 0x00000001; constant.DataLength = i + 1; constant = constant / n; int totalBits = exp.bitCount(); int count = 0; // perform squaring and multiply exponentiation for (int pos = 0; pos < exp.DataLength; pos++) { uint mask = 0x01; //Console.WriteLine("pos = " + pos); for (int index = 0; index < 32; index++) { if ((exp.data[pos] & mask) != 0) resultNum = BarrettReduction(resultNum * tempNum, n, constant); mask <<= 1; tempNum = BarrettReduction(tempNum * tempNum, n, constant); if (tempNum.DataLength == 1 && tempNum.data[0] == 1) { if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; } count++; if (count == totalBits) break; } } if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; } //*********************************************************************** // Fast calculation of modular reduction using Barrett's reduction. // Requires x < b^(2k), where b is the base. In this case, base is // 2^32 (uint). // // Reference [4] //*********************************************************************** private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) { int k = n.DataLength, kPlusOne = k + 1, kMinusOne = k - 1; BigInteger q1 = new BigInteger(); // q1 = x / b^(k-1) for (int i = kMinusOne, j = 0; i < x.DataLength; i++, j++) q1.data[j] = x.data[i]; q1.DataLength = x.DataLength - kMinusOne; if (q1.DataLength <= 0) q1.DataLength = 1; BigInteger q2 = q1 * constant; BigInteger q3 = new BigInteger(); // q3 = q2 / b^(k+1) for (int i = kPlusOne, j = 0; i < q2.DataLength; i++, j++) q3.data[j] = q2.data[i]; q3.DataLength = q2.DataLength - kPlusOne; if (q3.DataLength <= 0) q3.DataLength = 1; // r1 = x mod b^(k+1) // i.e. keep the lowest (k+1) words BigInteger r1 = new BigInteger(); int lengthToCopy = (x.DataLength > kPlusOne) ? kPlusOne : x.DataLength; for (int i = 0; i < lengthToCopy; i++) r1.data[i] = x.data[i]; r1.DataLength = lengthToCopy; // r2 = (q3 * n) mod b^(k+1) // partial multiplication of q3 and n BigInteger r2 = new BigInteger(); for (int i = 0; i < q3.DataLength; i++) { if (q3.data[i] == 0) continue; ulong mcarry = 0; int t = i; for (int j = 0; j < n.DataLength && t < kPlusOne; j++, t++) { // t = i + j ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) + (ulong)r2.data[t] + mcarry; r2.data[t] = (uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if (t < kPlusOne) r2.data[t] = (uint)mcarry; } r2.DataLength = kPlusOne; while (r2.DataLength > 1 && r2.data[r2.DataLength - 1] == 0) r2.DataLength--; r1 -= r2; if ((r1.data[maxLength - 1] & 0x80000000) != 0) // negative { BigInteger val = new BigInteger(); val.data[kPlusOne] = 0x00000001; val.DataLength = kPlusOne + 1; r1 += val; } while (r1 >= n) r1 -= n; return r1; } //*********************************************************************** // Returns gcd(this, bi) //*********************************************************************** public BigInteger gcd(BigInteger bi) { BigInteger x; BigInteger y; if ((data[maxLength - 1] & 0x80000000) != 0) // negative x = -this; else x = this; if ((bi.data[maxLength - 1] & 0x80000000) != 0) // negative y = -bi; else y = bi; BigInteger g = y; while (x.DataLength > 1 || (x.DataLength == 1 && x.data[0] != 0)) { g = x; x = y % x; y = g; } return g; } //*********************************************************************** // Populates "this" with the specified amount of random bits //*********************************************************************** public void genRandomBits(int bits, Random rand) { int dwords = bits >> 5; int remBits = bits & 0x1F; if (remBits != 0) dwords++; if (dwords > maxLength) throw (new ArithmeticException("Number of required bits > maxLength.")); for (int i = 0; i < dwords; i++) data[i] = (uint)(rand.NextDouble() * 0x100000000); for (int i = dwords; i < maxLength; i++) data[i] = 0; if (remBits != 0) { uint mask = (uint)(0x01 << (remBits - 1)); data[dwords - 1] |= mask; mask = (uint)(0xFFFFFFFF >> (32 - remBits)); data[dwords - 1] &= mask; } else data[dwords - 1] |= 0x80000000; DataLength = dwords; if (DataLength == 0) DataLength = 1; } //*********************************************************************** // Returns the position of the most significant bit in the BigInteger. // // Eg. The result is 0, if the value of BigInteger is 0...0000 0000 // The result is 1, if the value of BigInteger is 0...0000 0001 // The result is 2, if the value of BigInteger is 0...0000 0010 // The result is 2, if the value of BigInteger is 0...0000 0011 // //*********************************************************************** public int bitCount() { while (DataLength > 1 && data[DataLength - 1] == 0) DataLength--; uint value = data[DataLength - 1]; uint mask = 0x80000000; int bits = 32; while (bits > 0 && (value & mask) == 0) { bits--; mask >>= 1; } bits += ((DataLength - 1) << 5); return bits; } //*********************************************************************** // Probabilistic prime test based on Fermat's little theorem // // for any a < p (p does not divide a) if // a^(p-1) mod p != 1 then p is not prime. // // Otherwise, p is probably prime (pseudoprime to the chosen base). // // Returns // ------- // True if "this" is a pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // // Note - this method is fast but fails for Carmichael numbers except // when the randomly chosen base is a factor of the number. // //*********************************************************************** public bool FermatLittleTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.DataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { //Console.WriteLine("a = " + a.ToString()); return false; } } return true; } //*********************************************************************** // Probabilistic prime test based on Rabin-Miller's // // for any p > 0 with p - 1 = 2^s * t // // p is probably prime (strong pseudoprime) if for any a < p, // 1) a^t mod p = 1 or // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a strong pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool RabinMillerTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest.data[0] != 1) return false; BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if (b.DataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } if (result == false) return false; } return true; } //*********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // // where J is the Jacobi symbol. // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.DataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.DataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if (expResult == p_sub1) expResult = -1; // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if (expResult != jacob) return false; } return true; } //*********************************************************************** // Implementation of the Lucas Strong Pseudo Prime test. // // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d // with d odd and s >= 0. // // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n // is a strong Lucas pseudoprime with parameters (P, Q). We select // P and Q based on Selfridge. // // Returns True if number is a strong Lucus pseudo prime. // Otherwise, returns False indicating that number is composite. //*********************************************************************** public bool LucasStrongTest() { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; return LucasStrongTestHelper(thisVal); } private bool LucasStrongTestHelper(BigInteger thisVal) { // Do the test (selects D based on Selfridge) // Let D be the first element of the sequence // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 // Let P = 1, Q = (1-D) / 4 long D = 5, sign = -1, dCount = 0; bool done = false; while (!done) { int Jresult = BigInteger.Jacobi(D, thisVal); if (Jresult == -1) done = true; // J(D, this) = 1 else { if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found return false; if (dCount == 20) { // check for square BigInteger root = thisVal.sqrt(); if (root * root == thisVal) return false; } //Console.WriteLine(D); D = (Math.Abs(D) + 2) * sign; sign = -sign; } dCount++; } long Q = (1 - D) >> 2; /* Console.WriteLine("D = " + D); Console.WriteLine("Q = " + Q); Console.WriteLine("(n,D) = " + thisVal.gcd(D)); Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); */ BigInteger p_add1 = thisVal + 1; int s = 0; for (int index = 0; index < p_add1.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_add1.data[index] & mask) != 0) { index = p_add1.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = thisVal.DataLength << 1; constant.data[nLen] = 0x00000001; constant.DataLength = nLen + 1; constant = constant / thisVal; BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if ((lucas[0].DataLength == 1 && lucas[0].data[0] == 0) || (lucas[1].DataLength == 1 && lucas[1].data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for (int i = 1; i < s; i++) { if (!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if ((lucas[1].DataLength == 1 && lucas[1].data[0] == 0)) isPrime = true; } lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k } if (isPrime) // additional checks for composite numbers { // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.gcd(Q); if (g.DataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1 { if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0) lucas[2] += thisVal; BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal; if ((temp.data[maxLength - 1] & 0x80000000) != 0) temp += thisVal; if (lucas[2] != temp) isPrime = false; } } return isPrime; } //*********************************************************************** // Determines whether a number is probably prime, using the Rabin-Miller's // test. Before applying the test, the number is tested for divisibility // by primes < 2000 // // Returns true if number is probably prime. //*********************************************************************** public bool isProbablePrime(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; // test for divisibility by primes < 2000 for (int p = 0; p < primesBelow2000.Length; p++) { BigInteger divisor = primesBelow2000[p]; if (divisor >= thisVal) break; BigInteger resultNum = thisVal % divisor; if (resultNum.IntValue() == 0) { /* Console.WriteLine("Not prime! Divisible by {0}\n", primesBelow2000[p]); */ return false; } } if (thisVal.RabinMillerTest(confidence)) return true; else { //Console.WriteLine("Not prime! Failed primality test\n"); return false; } } //*********************************************************************** // Determines whether this BigInteger is probably prime using a // combination of base 2 strong pseudoprime test and Lucas strong // pseudoprime test. // // The sequence of the primality test is as follows, // // 1) Trial divisions are carried out using prime numbers below 2000. // if any of the primes divides this BigInteger, then it is not prime. // // 2) Perform base 2 strong pseudoprime test. If this BigInteger is a // base 2 strong pseudoprime, proceed on to the next step. // // 3) Perform strong Lucas pseudoprime test. // // Returns True if this BigInteger is both a base 2 strong pseudoprime // and a strong Lucas pseudoprime. // // For a detailed discussion of this primality test, see [6]. // //*********************************************************************** public bool isProbablePrime() { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if (thisVal.DataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; // test for divisibility by primes < 2000 for (int p = 0; p < primesBelow2000.Length; p++) { BigInteger divisor = primesBelow2000[p]; if (divisor >= thisVal) break; BigInteger resultNum = thisVal % divisor; if (resultNum.IntValue() == 0) { //Console.WriteLine("Not prime! Divisible by {0}\n", // primesBelow2000[p]); return false; } } // Perform BASE 2 Rabin-Miller Test // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = 2; // b = a^t mod p BigInteger b = a.modPow(t, thisVal); bool result = false; if (b.DataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } // if number is strong pseudoprime to base 2, then do a strong lucas test if (result) result = LucasStrongTestHelper(thisVal); return result; } //*********************************************************************** // Returns the lowest 4 bytes of the BigInteger as an int. //*********************************************************************** public int IntValue() { return (int)data[0]; } //*********************************************************************** // Returns the lowest 8 bytes of the BigInteger as a long. //*********************************************************************** public long LongValue() { long val = 0; val = (long)data[0]; try { // exception if maxLength = 1 val |= (long)data[1] << 32; } catch (Exception) { if ((data[0] & 0x80000000) != 0) // negative val = (int)data[0]; } return val; } //*********************************************************************** // Computes the Jacobi Symbol for a and b. // Algorithm adapted from [3] and [4] with some optimizations //*********************************************************************** public static int Jacobi(BigInteger a, BigInteger b) { // Jacobi defined only for odd integers if ((b.data[0] & 0x1) == 0) throw (new ArgumentException("Jacobi defined only for odd integers.")); if (a >= b) a %= b; if (a.DataLength == 1 && a.data[0] == 0) return 0; // a == 0 if (a.DataLength == 1 && a.data[0] == 1) return 1; // a == 1 if (a < 0) { if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0) return Jacobi(-a, b); else return -Jacobi(-a, b); } int e = 0; for (int index = 0; index < a.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((a.data[index] & mask) != 0) { index = a.DataLength; // to break the outer loop break; } mask <<= 1; e++; } } BigInteger a1 = a >> e; int s = 1; if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5)) s = -1; if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3) s = -s; if (a1.DataLength == 1 && a1.data[0] == 1) return s; else return (s * Jacobi(b % a1, a1)); } //*********************************************************************** // Generates a positive BigInteger that is probably prime. //*********************************************************************** public static BigInteger genPseudoPrime(int bits, int confidence, Random rand) { BigInteger result = new BigInteger(); bool done = false; while (!done) { result.genRandomBits(bits, rand); result.data[0] |= 0x01; // make it odd // prime test done = result.isProbablePrime(confidence); } return result; } //*********************************************************************** // Generates a random number with the specified number of bits such // that gcd(number, this) = 1 //*********************************************************************** public BigInteger genCoPrime(int bits, Random rand) { bool done = false; BigInteger result = new BigInteger(); while (!done) { result.genRandomBits(bits, rand); //Console.WriteLine(result.ToString(16)); // gcd test BigInteger g = result.gcd(this); if (g.DataLength == 1 && g.data[0] == 1) done = true; } return result; } //*********************************************************************** // Returns the modulo inverse of this. Throws ArithmeticException if // the inverse does not exist. (i.e. gcd(this, modulus) != 1) //*********************************************************************** public BigInteger modInverse(BigInteger modulus) { BigInteger[] p = { 0, 1 }; BigInteger[] q = new BigInteger[2]; // quotients BigInteger[] r = { 0, 0 }; // remainders int step = 0; BigInteger a = modulus; BigInteger b = this; while (b.DataLength > 1 || (b.DataLength == 1 && b.data[0] != 0)) { BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(); if (step > 1) { BigInteger pval = (p[0] - (p[1] * q[0])) % modulus; p[0] = p[1]; p[1] = pval; } if (b.DataLength == 1) singleByteDivide(a, b, quotient, remainder); else multiByteDivide(a, b, quotient, remainder); /* Console.WriteLine(quotient.dataLength); Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10), b.ToString(10), quotient.ToString(10), remainder.ToString(10), p[1].ToString(10)); */ q[0] = q[1]; r[0] = r[1]; q[1] = quotient; r[1] = remainder; a = b; b = remainder; step++; } if (r[0].DataLength > 1 || (r[0].DataLength == 1 && r[0].data[0] != 1)) throw (new ArithmeticException("No inverse!")); BigInteger result = ((p[0] - (p[1] * q[0])) % modulus); if ((result.data[maxLength - 1] & 0x80000000) != 0) result += modulus; // get the least positive modulus return result; } //*********************************************************************** // Returns the value of the BigInteger as a byte array. The lowest // index contains the MSB. //*********************************************************************** public byte[] getBytes() { int numBits = bitCount(); int numBytes = numBits >> 3; if ((numBits & 0x7) != 0) numBytes++; byte[] result = new byte[numBytes]; //Console.WriteLine(result.Length); int pos = 0; uint tempVal, val = data[DataLength - 1]; if ((tempVal = (val >> 24 & 0xFF)) != 0) result[pos++] = (byte)tempVal; if ((tempVal = (val >> 16 & 0xFF)) != 0) result[pos++] = (byte)tempVal; if ((tempVal = (val >> 8 & 0xFF)) != 0) result[pos++] = (byte)tempVal; if ((tempVal = (val & 0xFF)) != 0) result[pos++] = (byte)tempVal; for (int i = DataLength - 2; i >= 0; i--, pos += 4) { val = data[i]; result[pos + 3] = (byte)(val & 0xFF); val >>= 8; result[pos + 2] = (byte)(val & 0xFF); val >>= 8; result[pos + 1] = (byte)(val & 0xFF); val >>= 8; result[pos] = (byte)(val & 0xFF); } return result; } //*********************************************************************** // Sets the value of the specified bit to 1 // The Least Significant Bit position is 0. //*********************************************************************** public void setBit(uint bitNum) { uint bytePos = bitNum >> 5; // divide by 32 byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits uint mask = (uint)1 << bitPos; this.data[bytePos] |= mask; if (bytePos >= this.DataLength) this.DataLength = (int)bytePos + 1; } //*********************************************************************** // Sets the value of the specified bit to 0 // The Least Significant Bit position is 0. //*********************************************************************** public void unsetBit(uint bitNum) { uint bytePos = bitNum >> 5; if (bytePos < this.DataLength) { byte bitPos = (byte)(bitNum & 0x1F); uint mask = (uint)1 << bitPos; uint mask2 = 0xFFFFFFFF ^ mask; this.data[bytePos] &= mask2; if (this.DataLength > 1 && this.data[this.DataLength - 1] == 0) this.DataLength--; } } //*********************************************************************** // Returns a value that is equivalent to the integer square root // of the BigInteger. // // The integer square root of "this" is defined as the largest integer n // such that (n * n) <= this // //*********************************************************************** public BigInteger sqrt() { uint numBits = (uint)this.bitCount(); if ((numBits & 0x1) != 0) // odd number of bits numBits = (numBits >> 1) + 1; else numBits = (numBits >> 1); uint bytePos = numBits >> 5; byte bitPos = (byte)(numBits & 0x1F); uint mask; BigInteger result = new BigInteger(); if (bitPos == 0) mask = 0x80000000; else { mask = (uint)1 << bitPos; bytePos++; } result.DataLength = (int)bytePos; for (int i = (int)bytePos - 1; i >= 0; i--) { while (mask != 0) { // guess result.data[i] ^= mask; // undo the guess if its square is larger than this if ((result * result) > this) result.data[i] ^= mask; mask >>= 1; } mask = 0x80000000; } return result; } //*********************************************************************** // Returns the k_th number in the Lucas Sequence reduced modulo n. // // Uses index doubling to speed up the process. For example, to calculate V(k), // we maintain two numbers in the sequence V(n) and V(n+1). // // To obtain V(2n), we use the identity // V(2n) = (V(n) * V(n)) - (2 * Q^n) // To obtain V(2n+1), we first write it as // V(2n+1) = V((n+1) + n) // and use the identity // V(m+n) = V(m) * V(n) - Q * V(m-n) // Hence, // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n) // = V(n+1) * V(n) - Q^n * V(1) // = V(n+1) * V(n) - Q^n * P // // We use k in its binary expansion and perform index doubling for each // bit position. For each bit position that is set, we perform an // index doubling followed by an index addition. This means that for V(n), // we need to update it to V(2n+1). For V(n+1), we need to update it to // V((2n+1)+1) = V(2*(n+1)) // // This function returns // [0] = U(k) // [1] = V(k) // [2] = Q^n // // Where U(0) = 0 % n, U(1) = 1 % n // V(0) = 2 % n, V(1) = P % n //*********************************************************************** public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) { if (k.DataLength == 1 && k.data[0] == 0) { BigInteger[] result = new BigInteger[3]; result[0] = 0; result[1] = 2 % n; result[2] = 1 % n; return result; } // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = n.DataLength << 1; constant.data[nLen] = 0x00000001; constant.DataLength = nLen + 1; constant = constant / n; // calculate values of s and t int s = 0; for (int index = 0; index < k.DataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((k.data[index] & mask) != 0) { index = k.DataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = k >> s; //Console.WriteLine("s = " + s + " t = " + t); return LucasSequenceHelper(P, Q, t, n, constant, s); } //*********************************************************************** // Performs the calculation of the kth term in the Lucas Sequence. // For details of the algorithm, see reference [9]. // // k must be odd. i.e LSB == 1 //*********************************************************************** private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q, BigInteger k, BigInteger n, BigInteger constant, int s) { BigInteger[] result = new BigInteger[3]; if ((k.data[0] & 0x00000001) == 0) throw (new ArgumentException("Argument k must be odd.")); int numbits = k.bitCount(); uint mask = (uint)0x1 << ((numbits & 0x1F) - 1); // v = v0, v1 = v1, u1 = u1, Q_k = Q^0 BigInteger v = 2 % n, Q_k = 1 % n, v1 = P % n, u1 = Q_k; bool flag = true; for (int i = k.DataLength - 1; i >= 0; i--) // iterate on the binary expansion of k { //Console.WriteLine("round"); while (mask != 0) { if (i == 0 && mask == 0x00000001) // last bit break; if ((k.data[i] & mask) != 0) // bit is set { // index doubling with addition u1 = (u1 * v1) % n; v = ((v * v1) - (P * Q_k)) % n; v1 = n.BarrettReduction(v1 * v1, n, constant); v1 = (v1 - ((Q_k * Q) << 1)) % n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; } else { // index doubling u1 = ((u1 * v) - Q_k) % n; v1 = ((v * v1) - (P * Q_k)) % n; v = n.BarrettReduction(v * v, n, constant); v = (v - (Q_k << 1)) % n; if (flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } mask >>= 1; } mask = 0x80000000; } // at this point u1 = u(n+1) and v = v(n) // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1) u1 = ((u1 * v) - Q_k) % n; v = ((v * v1) - (P * Q_k)) % n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; for (int i = 0; i < s; i++) { // index doubling u1 = (u1 * v) % n; v = ((v * v) - (Q_k << 1)) % n; if (flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } result[0] = u1; result[1] = v; result[2] = Q_k; return result; } //*********************************************************************** // Tests the correct implementation of the /, %, * and + operators //*********************************************************************** public static void MulDivTest(int rounds) { Random rand = new Random(); byte[] val = new byte[64]; byte[] val2 = new byte[64]; for (int count = 0; count < rounds; count++) { // generate 2 numbers of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 65); int t2 = 0; while (t2 == 0) t2 = (int)(rand.NextDouble() * 65); bool done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t1) val[i] = (byte)(rand.NextDouble() * 256); else val[i] = 0; if (val[i] != 0) done = true; } } done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t2) val2[i] = (byte)(rand.NextDouble() * 256); else val2[i] = 0; if (val2[i] != 0) done = true; } } while (val[0] == 0) val[0] = (byte)(rand.NextDouble() * 256); while (val2[0] == 0) val2[0] = (byte)(rand.NextDouble() * 256); Console.WriteLine(count); BigInteger bn1 = new BigInteger(val, t1); BigInteger bn2 = new BigInteger(val2, t2); // Determine the quotient and remainder by dividing // the first number by the second. BigInteger bn3 = bn1 / bn2; BigInteger bn4 = bn1 % bn2; // Recalculate the number BigInteger bn5 = (bn3 * bn2) + bn4; // Make sure they're the same if (bn5 != bn1) { Console.WriteLine("Error at " + count); Console.WriteLine(bn1 + "\n"); Console.WriteLine(bn2 + "\n"); Console.WriteLine(bn3 + "\n"); Console.WriteLine(bn4 + "\n"); Console.WriteLine(bn5 + "\n"); return; } } } //*********************************************************************** // Tests the correct implementation of the modulo exponential function // using RSA encryption and decryption (using pre-computed encryption and // decryption keys). //*********************************************************************** public static void RSATest(int rounds) { Random rand = new Random(1); byte[] val = new byte[64]; // private and public key BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16); BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16); BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16); Console.WriteLine("e =\n" + bi_e.ToString(10)); Console.WriteLine("\nd =\n" + bi_d.ToString(10)); Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); for (int count = 0; count < rounds; count++) { // generate data of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 65); bool done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t1) val[i] = (byte)(rand.NextDouble() * 256); else val[i] = 0; if (val[i] != 0) done = true; } } while (val[0] == 0) val[0] = (byte)(rand.NextDouble() * 256); Console.Write("Round = " + count); // encrypt and decrypt data BigInteger bi_data = new BigInteger(val, t1); BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); // compare if (bi_decrypted != bi_data) { Console.WriteLine("\nError at round " + count); Console.WriteLine(bi_data + "\n"); return; } Console.WriteLine(" <PASSED>."); } } //*********************************************************************** // Tests the correct implementation of the modulo exponential and // inverse modulo functions using RSA encryption and decryption. The two // pseudoprimes p and q are fixed, but the two RSA keys are generated // for each round of testing. //*********************************************************************** public static void RSATest2(int rounds) { Random rand = new Random(); byte[] val = new byte[64]; byte[] pseudoPrime1 = { (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A, (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C, (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3, (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41, (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56, (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE, (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41, (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA, (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF, (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D, (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3, }; byte[] pseudoPrime2 = { (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7, (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E, (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3, (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93, (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF, (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20, (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8, (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F, (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C, (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80, (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB, }; BigInteger bi_p = new BigInteger(pseudoPrime1); BigInteger bi_q = new BigInteger(pseudoPrime2); BigInteger bi_pq = (bi_p - 1) * (bi_q - 1); BigInteger bi_n = bi_p * bi_q; for (int count = 0; count < rounds; count++) { // generate private and public key BigInteger bi_e = bi_pq.genCoPrime(512, rand); BigInteger bi_d = bi_e.modInverse(bi_pq); Console.WriteLine("\ne =\n" + bi_e.ToString(10)); Console.WriteLine("\nd =\n" + bi_d.ToString(10)); Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); // generate data of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 65); bool done = false; while (!done) { for (int i = 0; i < 64; i++) { if (i < t1) val[i] = (byte)(rand.NextDouble() * 256); else val[i] = 0; if (val[i] != 0) done = true; } } while (val[0] == 0) val[0] = (byte)(rand.NextDouble() * 256); Console.Write("Round = " + count); // encrypt and decrypt data BigInteger bi_data = new BigInteger(val, t1); BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); // compare if (bi_decrypted != bi_data) { Console.WriteLine("\nError at round " + count); Console.WriteLine(bi_data + "\n"); return; } Console.WriteLine(" <PASSED>."); } } //*********************************************************************** // Tests the correct implementation of sqrt() method. //*********************************************************************** public static void SqrtTest(int rounds) { Random rand = new Random(); for (int count = 0; count < rounds; count++) { // generate data of random length int t1 = 0; while (t1 == 0) t1 = (int)(rand.NextDouble() * 1024); Console.Write("Round = " + count); BigInteger a = new BigInteger(); a.genRandomBits(t1, rand); BigInteger b = a.sqrt(); BigInteger c = (b + 1) * (b + 1); // check that b is the largest integer such that b*b <= a if (c <= a) { Console.WriteLine("\nError at round " + count); Console.WriteLine(a + "\n"); return; } Console.WriteLine(" <PASSED>."); } } } }
上面主要講解了非對稱加密算法的原理和分類,以及非對稱加密算法在.NET中的應用,也對非對稱加密算法的.NET底層源碼作了分析,但願能夠幫助到你們。
DotNet加密方式解析--散列加密:http://www.cnblogs.com/pengze0902/p/6268700.html
DotNet加密方式解析--對稱加密:http://www.cnblogs.com/pengze0902/p/6268702.html
DotNet加密方式解析--數字簽名:http://www.cnblogs.com/pengze0902/p/6268709.html
DotNet加密方式解析--非對稱加密:http://www.cnblogs.com/pengze0902/p/6268705.html