給定一個完美二叉樹,其全部葉子節點都在同一層,每一個父節點都有兩個子節點。二叉樹定義以下:node
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每一個 next 指針,讓這個指針指向其下一個右側節點。若是找不到下一個右側節點,則將 next 指針設置爲 NULL。面試
初始狀態下,全部 next 指針都被設置爲 NULL。算法
示例:分佈式
輸入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1} 輸出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1} 解釋:給定二叉樹如圖 A 所示,你的函數應該填充它的每一個 next 指針,以指向其下一個右側節點,如圖 B 所示。
使用層序遍歷,遍歷的時候把同層的節點鏈接起來;函數
class Solution { public Node connect(Node root) { if (root == null) return null; Queue<Node> queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { int size = queue.size(); Node current = null; while (size > 0) { Node node = queue.poll(); if (node.right != null) queue.add(node.right); if (node.left != null) queue.add(node.left); node.next = current; current = node; size--; } } return root; } }
遞歸的時候咱們一般就分解爲遞歸子問題和遞歸結束條件。spa
遞歸子問題指針
遞歸結束條件code
class Solution { public Node connect(Node root) { // o(1) space. if (root == null) return null; if (root.left != null) root.left.next = root.right; if (root.right != null && root.next != null) root.right.next = root.next.left; connect(root.left); connect(root.right); return root; } }
層序遍歷咱們以前用隊列來作,可是有時候咱們會要求層序遍歷用常數的空間複雜度來解。這種方法最關鍵的地方在於理解如何從上一層切換到下一層的。dummy的做用用於記錄上一層的第一個節點是誰,每當遍歷完一層以後,切到下一層.遞歸
class Solution { public Node connect(Node root) { Node dummy = new Node(0); Node pre = dummy; Node currentRoot = root; while (currentRoot != null) { if (currentRoot.left != null) { pre.next = currentRoot.left; pre = pre.next; } if (currentRoot.right != null) { pre.next = currentRoot.right; pre = pre.next; } currentRoot = currentRoot.next; if (currentRoot == null) { // 切換層. pre = dummy; currentRoot = dummy.next; dummy.next = null; } } return root; } }