源碼git地址:http://git.oschina.net/zhengweishan/Kafka_study_demohtml
github下載地址java
我使用的是官網的kafka_2.11-0.10.0.0版本,最新的是kafka_2.11-0.10.0.1版本,你們自行下載安裝配置。點擊進入下載地址,點擊進入如何win下配置開發環境 ##二、 建立項目 ## 兩種方式:git
(a)普通的方式建立github
注意:開發時候,須要將下載kafka-2.11-0.10.0.0.jar包加入到classpath下面,這個包包含了全部Kafka的api的實現。因爲kafka是使用Scala編寫的,因此可能下載的kafka中的libs文件中的kafka-2.11-0.10.0.0.jar放到項目中不能用,並且還依賴scala-library-2.11.8.jar,因此推薦使用第二種方式構建項目。apache
項目結構圖:api
(b)maven構建項目 maven下載配置這裏再也不敘述,請參看:eclipse建立maven多模塊項目中有關maven的介紹。好處在於不用本身去添加依賴了,maven本身幫咱們加載依賴。session
項目結構圖:多線程
package com.kafka.demo; import java.util.Date; import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; /** * [@see](http://my.oschina.net/weimingwei) https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example * [@see](http://my.oschina.net/weimingwei) http://kafka.apache.org/documentation.html#producerapi * [@author](http://my.oschina.net/arthor) wesley * */ public class ProducerDemo { @SuppressWarnings("deprecation") public static void main(String[] args) { int events = 20; // [@see](http://my.oschina.net/weimingwei) http://kafka.apache.org/08/configuration.html-- 3.3 Producer // Configs // @see http://kafka.apache.org/documentation.html#producerconfigs // 設置配置屬性 Properties props = new Properties(); props.put("metadata.broker.list", "127.0.0.1:9092"); // 配置kafka的IP和端口 props.put("serializer.class", "kafka.serializer.StringEncoder"); // key.serializer.class默認爲serializer.class props.put("key.serializer.class", "kafka.serializer.StringEncoder"); // 可選配置,若是不配置,則使用默認的partitioner props.put("partitioner.class", "com.kafka.demo.PartitionerDemo"); // 觸發acknowledgement機制,不然是fire and forget,可能會引發數據丟失 // 值爲0,1,-1,能夠參考 props.put("request.required.acks", "1"); ProducerConfig config = new ProducerConfig(props); // 建立producer Producer<String, String> producer = new Producer<String, String>(config); // 產生併發送消息 long start = System.currentTimeMillis(); for (long i = 0; i < events; i++) { long runtime = new Date().getTime(); String ip = "192.168.1." + i; String msg = runtime + "--www.kafkademo.com--" + ip; // 若是topic不存在,則會自動建立,默認replication-factor爲1,partitions爲0 KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg); System.out.println("-----Kafka Producer----createMessage----" + data); producer.send(data); } System.out.println("Time consuming:" + (System.currentTimeMillis() - start)); // 關閉producer producer.close(); } }
package com.kafka.demo; import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; @SuppressWarnings("deprecation") public class PartitionerDemo implements Partitioner { public PartitionerDemo (VerifiableProperties props) { } public int partition(Object key, int a_numPartitions) { int partition = 0; String stringKey = (String) key; int offset = stringKey.lastIndexOf('.'); if (offset > 0) { partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions; } return partition; } }
紅色部分就是新生成的待消費的信息。併發
package com.kafka.demo; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; /** * @see http://kafka.apache.org/documentation.html#consumerapi * @see https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example * @see https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example * @author wesley * */ public class ConsumerSimpleDemo extends Thread { // 消費者鏈接 private final ConsumerConnector consumer; // 要消費的話題 private final String topic; public ConsumerSimpleDemo(String topic) { consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig()); this.topic = topic; } // 配置相關信息 private static ConsumerConfig createConsumerConfig() { Properties props = new Properties(); // props.put("zookeeper.connect","localhost:2181,10.XX.XX.XX:2181,10.XX.XX.XX:2181"); // 配置要鏈接的zookeeper地址與端口 props.put("zookeeper.connect", "127.0.0.1:2181"); // 配置zookeeper的組id props.put("group.id", "group-1"); // 配置zookeeper鏈接超時間隔 props.put("zookeeper.session.timeout.ms", "10000"); // 配置zookeeper異步執行時間 props.put("zookeeper.sync.time.ms", "200"); // 配置自動提交時間間隔 props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } public void run() { Map<String, Integer> topickMap = new HashMap<String, Integer>(); topickMap.put(topic, 1); Map<String, List<KafkaStream<byte[], byte[]>>> streamMap = consumer.createMessageStreams(topickMap); KafkaStream<byte[], byte[]> stream = streamMap.get(topic).get(0); ConsumerIterator<byte[], byte[]> it = stream.iterator(); System.out.println("*********Results********"); while (true) { if (it.hasNext()) { // 打印獲得的消息 System.err.println(Thread.currentThread() + " get data:" + new String(it.next().message())); } try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } public static void main(String[] args) { ConsumerSimpleDemo consumerThread = new ConsumerSimpleDemo("page_visits"); consumerThread.start(); } }
package com.kafka.demo; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import kafka.consumer.Consumer; import kafka.consumer.ConsumerConfig; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; /* https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example * http://kafka.apache.org/documentation.html#consumerapi */ public class ConsumerDemo { private final ConsumerConnector consumer; private final String topic; private ExecutorService executor; public ConsumerDemo(String a_zookeeper, String a_groupId, String a_topic) { consumer = Consumer.createJavaConsumerConnector(createConsumerConfig(a_zookeeper,a_groupId)); this.topic = a_topic; } public void shutdown() { if (consumer != null) consumer.shutdown(); if (executor != null) executor.shutdown(); try { if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) { System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly"); } } catch (InterruptedException e) { System.out.println("Interrupted during shutdown, exiting uncleanly"); } } public void run(int numThreads) { System.out.println("-----Consumers begin to execute-------"); Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(topic, new Integer(numThreads)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer .createMessageStreams(topicCountMap); List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); System.err.println("-----Need to consume content----"+streams); // now launch all the threads executor = Executors.newFixedThreadPool(numThreads); // now create an object to consume the messages int threadNumber = 0; for (final KafkaStream<byte[], byte[]> stream : streams) { System.out.println("-----Consumers begin to consume-------"+stream); executor.submit(new ConsumerMsgTask(stream, threadNumber)); threadNumber++; } } private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) { Properties props = new Properties(); // see http://kafka.apache.org/08/configuration.html --3.2 Consumer Configs // http://kafka.apache.org/documentation.html#consumerconfigs props.put("zookeeper.connect", a_zookeeper); //配置ZK地址 props.put("group.id", a_groupId); //必填字段 props.put("zookeeper.session.timeout.ms", "400"); props.put("zookeeper.sync.time.ms", "200"); props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } public static void main(String[] arg) { String[] args = { "127.0.0.1:2181", "group-1", "page_visits", "10" }; String zooKeeper = args[0]; String groupId = args[1]; String topic = args[2]; int threads = Integer.parseInt(args[3]); ConsumerDemo demo = new ConsumerDemo(zooKeeper, groupId, topic); demo.run(threads); try { Thread.sleep(10000); } catch (InterruptedException ie) { } demo.shutdown(); } }
注意:這裏要調用處理消息的類eclipse
package com.kafka.demo; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; public class ConsumerMsgTask implements Runnable { private KafkaStream<byte[], byte[]> m_stream; private int m_threadNumber; public ConsumerMsgTask(KafkaStream<byte[], byte[]> stream, int threadNumber) { m_threadNumber = threadNumber; m_stream = stream; } public void run() { System.out.println("-----Consumers begin to consume-------"); ConsumerIterator<byte[], byte[]> it = m_stream.iterator(); while (it.hasNext()){ System.out.println("Thread " + m_threadNumber + ": "+ new String(it.next().message())); } System.out.println("Shutting down Thread: " + m_threadNumber); } }
實例到此結束,你們能夠多看看kafka的文檔,多瞭解一些kafka的知識,這裏只是演示了怎麼用,其實也都是文檔中的東西,本身總結了一下。
說明:
爲何使用High Level Consumer?
有些場景下,從Kafka中讀取消息的邏輯不處理消息的offset,僅僅是獲取消息數據。High Level Consumer就提供了這種功能。首先要知道的是,High Level Consumer在ZooKeeper上保存最新的offset(從指定的分區中讀取)。這個offset基於consumer group名存儲。Consumer group名在Kafka集羣上是全局性的,在啓動新的consumer group的時候要當心集羣上沒有關閉的consumer。當一個consumer線程啓動了,Kafka會將它加入到相同的topic下的相同consumer group裏,而且觸發從新分配。在從新分配時,Kafka將partition分配給consumer,有可能會移動一個partition給另外一個consumer。若是老的、新的處理邏輯同時存在,有可能一些消息傳遞到了老的consumer上。使用High LevelConsumer首先要知道的是,它應該是多線程的。消費者線程的數量跟tipic的partition數量有關,它們之間有一些特定的規則:
若是線程數量大於主題的分區數量,一些線程將得不到任何消息
若是分區數大於線程數,一些線程將獲得多個分區的消息
若是一個線程處理多個分區的消息,它接收到消息的順序是不能保證的。好比,先從分區10獲取了5條消息,從分區11獲取了6條消息,而後從分區10獲取了5條,緊接着又從分區10獲取了5條,雖然分區11還有消息。
添加更多了同consumer group的consumer將觸發Kafka從新分配,某個分區原本分配給a線程的,重新分配後,有可能分配給了b線程。