http://www.cnblogs.com/batteryhp/p/5023330.htmlhtml
數據分析和建模的大量編程工做都是在數據準備上的(深表贊成):加載、清理、轉換以及重塑。pandas和Python標準庫提供了一組高級的、靈活的、高效的核心函數和算法,他們可以輕鬆地將數據規整化爲正確的形式。算法
一、合併數據集數據庫
pandas對象中的數據能夠經過一些內置的方式進行合併編程
因爲太經常使用,給出一些例子。數組
數據庫風格的DataFrame合併dom
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #數據集的合併(merge)或者鏈接(join)運算是經過一個或者多個鍵將行連接起來。這是關係型數據庫的核心。 df1 = DataFrame({'key':['b','b','a','c','a','a','b'],'data1':range(7)}) df2 = DataFrame({'key':['a','b','d'],'data2':range(3)}) print df1 print df2 #沒有指定用哪些列進行合併時,默認用重複的列名進行合併,而且只保留合併列中的交集,其餘捨去 #即merge默認的是「內鏈接」 print pd.merge(df1,df2) #不過,最好顯示指定一下: print pd.merge(df1,df2,on = 'key') #若是兩個對象列明不一樣,也能夠分別指定,固然,原則是這兩列得有相同的值 df3 = DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1':range(7)}) df4 = DataFrame({'rkey':['a','b','d'],'data2':range(3)}) print pd.merge(df3,df4,left_on = 'lkey',right_on = 'rkey') #若是兩列沒有相同值,返回一個空DataFrame print pd.merge(df3,df4,left_on = 'lkey',right_on = 'data2') #merge選項有inner、left、right、outer幾種,分別表示 內、左、右、外鏈接 print pd.merge(df1,df2,how = 'outer') #下面看多對多(即兩個對象中每一個鍵值對應不一樣的值) df1 = DataFrame({'key':list('bbacab'),'data1':range(6)}) df2 = DataFrame({'key':list('ababd'),'data2':range(5)}) #下面是多對多的合併,結果是笛卡爾積也就是針對一個鍵值,兩個對象對應值的全部組合 print pd.merge(df1,df2,on = 'key',how = 'left') #對多個鍵進行合併,傳入一個由列名組成的列表便可 left = DataFrame({'key1':['foo','foo','bar'],'key2':['one','two','one'],'lval':[1,2,3]}) right = DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]}) #多個鍵進行合併就是將多個鍵組合成元組,看成單個鍵值使用(實際上並非這麼回事) #注意要「不忘初心」,根據鍵值是對其餘列的值進行合併 print pd.merge(left,right,on = ['key1','key2'],how = 'outer') #警告:列與列合併時,會把DataFrame的索引丟棄 #下面處理重複列名的問題,這裏的重複列名是說,依據一列進行合併時兩個對象剩下的列中有的列名字重複 #pandas會自動添加後綴 print pd.merge(left,right,on = 'key1') #後綴能夠經過suffixes選項來指定 print pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
>>>
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
data2 key
0 0 a
1 1 b
2 2 d
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
data1 lkey data2 rkey
0 2 a 0 a
1 4 a 0 a
2 5 a 0 a
3 0 b 1 b
4 1 b 1 b
5 6 b 1 b
Empty DataFrame
Columns: array([data1, lkey, data2, rkey], dtype=object)
Index: array([], dtype=int64)
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
6 3 c NaN
7 NaN d 2
data1 key data2
0 2 a 0
1 2 a 2
2 4 a 0
3 4 a 2
4 0 b 1
5 0 b 3
6 1 b 1
7 1 b 3
8 5 b 1
9 5 b 3
10 3 c NaN
key1 key2 lval rval
0 bar one 3 6
1 bar two NaN 7
2 foo one 1 4
3 foo one 1 5
4 foo two 2 NaN
key1 key2_x lval key2_y rval
0 bar one 3 one 6
1 bar one 3 two 7
2 foo one 1 one 4
3 foo one 1 one 5
4 foo two 2 one 4
5 foo two 2 one 5
key1 key2_left lval key2_right rval
0 bar one 3 one 6
1 bar one 3 two 7
2 foo one 1 one 4
3 foo one 1 one 5
4 foo two 2 one 4
5 foo two 2 one 5
[Finished in 0.7s]
merge的選項有:ide
索引上的合併函數
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #索引上的合併 #DataFrame中鏈接鍵有時候在索引中。這時能夠傳入left_index = True或者right_index = True left1 = DataFrame({'key':list('abaabc'),'value':range(6)}) right1 = DataFrame({'group_val':[3.5,7],'index':['a','b']}) print right1 #注意上面的right1的索引值和ledt1中的值是同類型的,也就是說至關於對右邊的進行轉置而且索引跟隨改變再進行合併 print pd.merge(left1,right1,left_on = 'key',right_index = True,how = 'inner') #對於層次化索引,事情就有點複雜了 lefth = DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Nevada'], 'key2':[2000,2001,2002,2001,2002],'data':np.arange(5.)}) righth = DataFrame(np.arange(12.).reshape((6,2)),index = [['Nevada','Nevada','Ohio','Ohio','Ohio','Ohio',], [2001,2000,2000,2000,2001,2002]],columns = ['event1','event2']) print lefth print righth #這種狀況下,必須指明用做合併鍵的多個列(注意對重複索引值的處理) #注意獲得的結果的index是跟左邊對象的index一致 print pd.merge(lefth,righth,left_on = ['key1','key2'],right_index = True,how = 'outer') #同時使用合併雙方的索引也沒問題 left2 = DataFrame([[1.,2.],[3.,4.],[5.,6.]],index = ['a','c','e'],columns = ['Ohio','Nevada']) right2 = DataFrame([[7.,8.],[9.,10.],[11.,12.],[13,14]],index = ['b','c','d','e'],columns = ['Missouri','Alabama']) print left2 print right2 #注意下面的方式,利用index進行合併 print pd.merge(left2,right2,how = 'outer',left_index = True,right_index = True) #DataFrame有一個join實例方法,它能更方便地實現按索引合併。還能夠用做合併多個帶有相同或者類似索引的 #DataFrame對象,而無論有沒有重疊的列 print left2.join(right2,how = 'outer') #因爲一些歷史緣由,DataFrame的join方法是在鏈接鍵上作左鏈接。它還支持參數DataFrame的索引跟 #調用者DataFrame的某個列之間的鏈接(這個方法有點像merge中的left_index這樣的參數) print left1.join(right1,on = 'key') #這個函數如今已經跟書上的不同了 #最後,對於簡單的索引合併,還能夠向join傳入多個DataFrame another = DataFrame([[7.,8.],[9.,10.],[11.,12.],[16.,17.]],index = ['a','c','e','f'],columns = ['New York','Oregon']) print left2.join([right2,another],how = 'outer')
>>>
group_val index
0 3.5 a
1 7.0 b
Empty DataFrame
Columns: array([key, value, group_val, index], dtype=object)
Index: array([], dtype=int64)
data key1 key2
0 0 Ohio 2000
1 1 Ohio 2001
2 2 Ohio 2002
3 3 Nevada 2001
4 4 Nevada 2002
event1 event2
Nevada 2001 0 1
2000 2 3
Ohio 2000 4 5
2000 6 7
2001 8 9
2002 10 11
data key1 key2 event1 event2
4 NaN Nevada 2000 2 3
3 3 Nevada 2001 0 1
4 4 Nevada 2002 NaN NaN
0 0 Ohio 2000 4 5
0 0 Ohio 2000 6 7
1 1 Ohio 2001 8 9
2 2 Ohio 2002 10 11
Ohio Nevada
a 1 2
c 3 4
e 5 6
Missouri Alabama
b 7 8
c 9 10
d 11 12
e 13 14
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
key value group_val index
0 a 0 NaN NaN
1 b 1 NaN NaN
2 a 2 NaN NaN
3 a 3 NaN NaN
4 b 4 NaN NaN
5 c 5 NaN NaN
Ohio Nevada Missouri Alabama New York Oregon
a 1 2 NaN NaN 7 8
b NaN NaN 7 8 NaN NaN
c 3 4 9 10 9 10
d NaN NaN 11 12 NaN NaN
e 5 6 13 14 11 12
f NaN NaN NaN NaN 16 17
[Finished in 0.8s]
下面是軸向鏈接spa
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #另外一種合併運算爲鏈接(concatenation),綁定(binding)或者堆疊(stacking)。 #Numpy有一個用於合併原始Numpy數組的concatenation函數: arr = np.arange(12).reshape((3,4)) print arr print np.concatenate([arr,arr],axis = 1)
對於pandas對象,須要考慮:code
下面介紹concat函數:
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame ''' #另外一種合併運算爲鏈接(concatenation),綁定(binding)或者堆疊(stacking)。 #Numpy有一個用於合併原始Numpy數組的concatenation函數: arr = np.arange(12).reshape((3,4)) print arr print np.concatenate([arr,arr],axis = 1) ''' s1 = Series([0,1],index = ['a','b']) s2 = Series([2,3,4],index = ['c','d','e']) s3 = Series([5,6],index = ['f','g']) print pd.concat([s1,s2,s3]) #注意下面的方式,產生的是一個DataFrame,index是全部index合併起來,列是每一個Series佔一列,其餘位置N啊N print pd.concat([s1,s2,s3],axis = 1) #若是Series有重複值的狀況下 s4 = pd.concat([s1 * 5,s3]) print s4 #下面的inner是取交集 print pd.concat([s1,s4],axis = 1,join = 'inner') #經過join_axes指定要在「其餘軸」上使用的索引 print pd.concat([s1,s4],axis = 1,join_axes = [['a','c','b','e']]) #如今有個問題,參與鏈接的各個部分在最後的結果中不能區分,能夠設置層次化索引解決此問題 result = pd.concat([s1,s2,s3],keys = ['one','two','three']) print result print result.unstack() #若是沿着axis=1進行合併,則固然的key成爲DataFrame的列頭(列名): result1 = pd.concat([s1,s2,s3],axis = 1,keys = ['one','two','three']) print result1 print result1.columns #下面看DataFrame的合併方式,行列數量不一樣也能合併,比R語言好 df1 = DataFrame(np.arange(6).reshape(3,2),index = ['a','b','c'],columns = ['one','two']) df2 = DataFrame(5 + np.arange(4).reshape(2,2),index = ['a','c'],columns = ['three','four']) print pd.concat([df1,df2])#默認將行合併 print pd.concat([df1,df2],axis = 1,keys = ['level1','level2']) #下面的這種合併方式更加科學,字典的形式 print pd.concat({'level1':df1,'level2':df2},axis = 0) print pd.concat([df1,df2],axis = 1,keys = ['level1','level2'],names = ['upper','lower']) #最後須要考慮的問題是,跟當前分析工做無關的DataFrame行索引,也就是說,原來的行索引沒有意義了 df1 = DataFrame(np.random.randn(3,4),columns = [list('abcd')]) df2 = DataFrame(np.random.randn(2,3),columns = ['b','d','a']) #只要加上ignore_index = True 便可 print pd.concat([df1,df2],ignore_index = True)
>>>
a 0
b 1
c 2
d 3
e 4
f 5
g 6
0 1 2
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
a 0
b 5
f 5
g 6
0 1
a 0 0
b 1 5
0 1
a 0 0
c NaN NaN
b 1 5
e NaN NaN
one a 0
b 1
two c 2
d 3
e 4
three f 5
g 6
a b c d e f g
one 0 1 NaN NaN NaN NaN NaN
two NaN NaN 2 3 4 NaN NaN
three NaN NaN NaN NaN NaN 5 6
one two three
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
array([one, two, three], dtype=object)
four one three two
a NaN 0 NaN 1
b NaN 2 NaN 3
c NaN 4 NaN 5
a 6 NaN 5 NaN
c 8 NaN 7 NaN
level1 level2
one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
four one three two
level1 a NaN 0 NaN 1
b NaN 2 NaN 3
c NaN 4 NaN 5
level2 a 6 NaN 5 NaN
c 8 NaN 7 NaN
upper level1 level2
lower one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
a b c d
0 2.277611 0.597990 2.128480 -0.467747
1 2.450508 -0.682617 1.129313 1.174447
2 -0.106422 0.590667 1.015706 0.712673
3 -1.323742 0.060791 NaN 1.095113
4 0.586082 -0.849976 NaN -0.320739
[Finished in 1.9s]
concat函數的參數以下:
合併重疊數據
還有一種數據是不能簡單經過merge、concatenation解決的。好比,有可能部分或者所有索引重疊的兩個數據集。
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame a = Series([np.nan,2.5,np.nan,3.5,4.5,np.nan], index = ['f','e','d','c','b','a']) b = Series(np.arange(len(a),dtype = np.float64), index = ['f','e','d','c','b','a']) b[-1] = np.nan print a,'\n' print b,'\n' #print a + b #注意這裏的自動對齊 #c用來按照索引取a、b的值: c = np.where(pd.isnull(a),b,a) print c,'\n' #numpy中也有這樣一個方法combine_first print b[:-2].combine_first(a[2:]) #注意二者都不爲空時,保留b的值 #對於DataFrame而言,combine_first也是作一樣的事,能夠看做用參數對象中的數據 #爲調用者對象的確實數據「打補丁」 df1 = DataFrame({'a':[1.,np.nan,5.,np.nan], 'b':[np.nan,2.,np.nan,6.], 'c':range(2,18,4)}) df2 = DataFrame({'a':[5.,4.,np.nan,3.,7.], 'b':[np.nan,3.,4.,6.,8.]}) #要特別注意下面的應用,df1比df2 少一行,運行之後df1就比原來多了一行,這有時候對數據處理是個隱藏bug啊! print df1.combine_first(df2)
>>>
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
f 0
e 1
d 2
c 3
b 4
a NaN
f 0.0
e 2.5
d 2.0
c 3.5
b 4.5
a NaN
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
a b c
0 1 NaN 2
1 4 2 6
2 5 4 10
3 3 6 14
4 7 8 NaN
[Finished in 0.9s]
二、重塑和軸向旋轉
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #reshape(重塑)、pivot(軸向旋轉)能夠對錶格型數據進行基礎運算 #重塑層次化索引 #stack:將數據的列「旋轉」爲行 #unstack:將數據的行「旋轉」爲列 data = DataFrame(np.arange(6).reshape((2,3)),index = pd.Index(['Ohio','Colorado'],name = 'state'), columns = pd.Index(['one','two','three'],name = 'number')) print data result = data.stack() print result #這裏就是將列名做爲了層次化索引(內層索引),獲得了一個Series print result.unstack() #將層次化索引轉換爲二維表,獲得DataFrame #默認狀況下,unstack處理的是內層的索引,若想別的層次,傳入編號或者名稱便可,注意最外一層編號爲0 result1 = result.unstack(0) print result1 print result1.stack(0),'\n' #默認,列爲內層 print result1.unstack(1) ,'\n' #列爲外層 #下面看有缺失值的狀況,unstack()會標示出缺失值 s1 = Series([0,1,2,3],index = [list('abcd')]) s2 = Series([4,5,6],index = ['c','d','e']) data2 = pd.concat([s1,s2],keys = ['one','two']) print data2 print data2.unstack(),'\n' #stack會濾除缺失數據 print data2.unstack().stack(),'\n' print data2.unstack().stack(dropna = False) ,'\n' #保留缺失值 #對DataFrame進行unstack時,做爲旋轉軸的級別成爲結果中最低的,弄到最內層 df = DataFrame({'left':result,'right':result + 5},columns = pd.Index(['left','right'],name = 'side')) print 'df is \n',df print 'df.unstack is \n',df.unstack('state') print 'df.unstack.stack \n',df.unstack('state').stack('side')
將「長格式」轉換爲「寬格式」
#-*- encoding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import Series,DataFrame #時間序列中的數據一般是以所謂「長格式」(long)或「堆疊格式」(stacked)存儲在數據庫和csv中 #因爲沒有找到數據,本身動手寫一點 ldata = DataFrame({'date':['03-31','03-31','03-31','06-30','06-30','06-30'], 'item':['real','infl','unemp','real','infl','unemp'],'value':['2710.','000.','5.8','2778.','2.34','5.1']}) print 'ldata is \n',ldata #下面就是將data、item做爲行、列名,value填充進二維表 pivoted = ldata.pivot('date','item','value') print 'pivoted is \n',pivoted ldata['value2'] = np.random.randn(len(ldata)) print 'ldata is \n',ldata #看一下下面的結果,獲得的列就有了層次化列表 pivoted = ldata.pivot('date','item') print pivoted print 'pivoted is \n',pivoted['value'],'\n' #換一種試試,下面的就將value2填充,value就丟棄了 pivoted1 = ldata.pivot('date','item','value2') print pivoted1 #注意,pivot其實只是一個「快捷方式而已」,用set_index建立層次化索引,再用unstack重塑 unstacked = ldata.set_index(['date','item']).unstack('item') #unstack標明展開的軸 print unstacked